
Welcome to Web
Programming
Principles
The web is the most ubiquitous computing platform in the world. As a
developer, learning the web takes time. There are hundreds of languages,
libraries, frameworks, and tools to be learned, some old, some built yesterday,
and all being mixed together at once.

The fundamental unit of the web is the hyperlink--the web is interconnected.
These weekly notes provide numerous links to external resources, books,
blogs, and sample code. To get good at the web, you need to be curious and
you need to go exploring, you need to try things.

Make sure you follow the links below as you read, and begin to create your own
web of knowledge and experience. No one resource can begin to cover the
breadth and depth of web development.

Question: do I need to read the weekly notes? How about all the many
links to external resources?

Yes, you do need to read the weekly notes. You will be tested on this material.
We will discuss it in class, but not cover everything. The external links will help
you understand and master the material. You are advised to read some
external material, but you don't need to read all of it. However, make sure you
do read Recommended Readings.

https://en.wikipedia.org/wiki/Hyperlink
www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Internet Architecture
Overview

• How does the Internet work?
◦ How the Internet works in 5 minutes (video)

• How the Web works

Application Protocols
The web runs on-top of TCP/IP networks using a number of communication protocols, including:

• IP these 32-bit numbers (IPv4) are assigned to every device on the Internet (IPv6 uses 128-bit numbers).
• Domain Names human-readable addresses for servers on the Internet
• Domain Name System (DNS), the "Phone Book" of the Internet. There are many popular DNS servers you can use:

◦ OpenDNS: 208.67.222.222 , 208.67.220.220

◦ Cloudeflare: 1.1.1.1 , 1.0.0.1

◦ Google: 8.8.8.8 , 8.8.4.4

◦ There are lots more, but each has trade offs (privacy, speed)
• Hypertext Transfer Protocol (HTTP)

◦ How to get things on the web
◦ HTTP Responses

• Hypertext Transfer Protocol Secure (HTTPS)

There are many more as well (SMTP, FTP, POP, IMAP, SSH, etc).

We often use the terms "Web" and "Internet" interchangeably, however, they aren't the same. Pictured below, Tim Berners-Lee (left), who
invented the World Wide Web, and Vint Cert (right), who was one of the main inventors of the Internet:

Tim Berners-Lee (left) invented the web, and Vint Cert (right) invented the internet

The World Wide Web (WWW) runs on top of the Internet using HTTP, and allows us to access web services, request resources (i.e., pages,
images), and transmit data between clients and servers. The web is a subset of the Internet.

The web isn't owned or controlled by any single company, organization, or government. Instead, it is defined as a set of open
standards, which everyone building and using the web relies upon. Some examples of these standards include HTML, HTTP, SVG, and
many more.

HTTP Requests and Responses
The Hypertext Transfer Protocol is a stateless, client-server model for formatting requests and responses between computers on the
Internet. This means one computer makes a request (the client) to another (the server), and after the response is returned, the
connection is closed.

The server listens for requests, and fulfills (or rejects) those requests by returning (or generating) the requested resources, such as
images, web pages, videos, or other data.

URLs
Web resources are reachable via unique identifiers called a Uniform Resource Locator or URL. Consider the URL for this course's outline:

https://www.senecacollege.ca/cgi-bin/subject?s1=WEB222

https://developer.mozilla.org/en-US/docs/Learn/Common_questions/How_does_the_Internet_work
https://www.youtube.com/watch?v=7_LPdttKXPc
https://developer.mozilla.org/en-US/docs/Learn/Getting_started_with_the_web/How_the_Web_works
https://en.wikipedia.org/wiki/IP_address#IPv4_addresses
https://developer.mozilla.org/en-US/docs/Learn/Common_questions/What_is_a_domain_name#Structure_of_domain_names
https://www.cloudflare.com/learning/dns/what-is-dns/
https://www.dnsperf.com/#!dns-resolvers,North%20America
https://dev.opera.com/articles/http-basic-introduction/
https://dev.opera.com/articles/http-lets-get-it-on/
https://dev.opera.com/articles/http-response-codes/
https://en.wikipedia.org/wiki/HTTPS
https://en.wikipedia.org/wiki/Tim_Berners-Lee
https://en.wikipedia.org/wiki/Vint_Cerf
https://en.wikipedia.org/wiki/Web_standards
https://en.wikipedia.org/wiki/Web_standards
https://html.spec.whatwg.org/multipage/
https://tools.ietf.org/html/rfc7230
https://www.w3.org/TR/SVG11/
https://www.senecacollege.ca/cgi-bin/subject?s1=WEB222

A URL contains all the information necessary for a web client (e.g., a browser) to request the resource. In the URL given above we have:

• protocol: https: - the resource is available using the HTTPS (i.e., secure HTTP) protocol
• domain: www.senecacollege.ca - the domain (domain name) of the server. We could also have substituted the IP address

(23.208.15.99), but it's easier to remember domain names.
• port: Not Given - if not specified, the port is the default for HTTP 80 or 443 for HTTPS. It could have been specified by appending

:443 like so: https://www.senecacollege.ca:443

• origin: combining the protocol, domain, and port gives us a unique origin, https://www.senecacollege.ca . Origins play a central role
in the web's security model.

• path: /cgi-bin/subject - a filesystem-like path to the resource on the server. It may or may not end with a file extension (e.g., you
might also have seen another server use /cgi-bin/subject.html)

• query string: ?s1=WEB222 - additional parameters sent to the server as part of the URL, of the form name=value

URLs can only contain a limited set of characters, and anything outside that set has to be encoded. This includes things like spaces, non-
ASCII characters, Unicode, etc.

Requests
A URL describes the location (i.e., server, pathname) and how to interpret (i.e., which protocol) a resource on the Internet. To get the
resource, we need to request it by sending a properly formatted HTTP Request to the appropriate server (host):

Here we do a GET request using HTTP version 1.1 for the resource at the path /cgi-bin/subject on the server named
www.senecacollege.ca .

There are various HTTP Verbs we can use other than GET , which allow us to request that resources be returned, created, deleted,
updated, etc. The most common include:

• GET - retrieve the data at the given URL
• POST - create a new resource at the given URL based on the data sent along with the request in its body

• PUT - update an existing resource at the given URL with the data sent along with the request in its body

• DELETE - delete the resource at the given URL

We can use a URL in many ways, for example, via the command line using a tool like curl (NOTE: on Windows, use curl.exe):

GET /cgi-bin/subject HTTP/1.1

Host: www.senecacollege.ca

$ curl https://www.senecacollege.ca/cgi-bin/subject?s1=WEB222

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML+RDFa 1.0//EN"

"http://www.w3.org/MarkUp/DTD/xhtml-rdfa-1.dtd">

<html lang="en" dir="ltr"

xmlns:content="http://purl.org/rss/1.0/modules/content/"

xmlns:dc="http://purl.org/dc/terms/"

xmlns:foaf="http://xmlns.com/foaf/0.1/"

xmlns:og="http://ogp.me/ns#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:sioc="http://rdfs.org/sioc/ns#"

xmlns:sioct="http://rdfs.org/sioc/types#"

...

</section> <!-- /.block -->

</div>

</footer>

</body>

</html>

https://curl.haxx.se/

Responses
Upon receiving a request for a URL, the server will respond with an HTTP Response, which includes information about the response, and
possibly the resource being requested. Let's use curl again, but this time ask that it --include the response headers:

In this case, we see a two-part structure: first a set of Response Headers; then the actual HTML Response Body. The two are
separated by a blank line. The headers provide extra metadata about the response, the resource being returned, the server, etc.

HTTP Headers are well defined, and easy to lookup via Google, MDN, or StackOverflow. They follow the key: value format, and can be
upper- or lower-case:

name: value

For example, in the response above, we see a number of interesting things:

• 200 OK - tells us that the requested resource was successful located and returned.
• Info about the Date

• The Content-Type is text , and more specifically, html (a web page) using ISO-8859-1 text encoding.

After these headers we have a blank line (i.e., \n\n), followed by the body of our response: the actual HTML document.

What if we requested a URL that we know doesn't exist?

This time, instead of a 200 status code, we get 302 . This indicates that the resource has moved, and later in the headers we are given a
new Location to try. Notice there is no body (not every response will include one).

Let's try following the suggested redirect URL:

$ curl --include https://www.senecacollege.ca/cgi-bin/subject\?s1\=WEB222

HTTP/1.1 200 OK

Content-Type: text/html;charset=ISO-8859-1

Strict-Transport-Security: max-age=16070400; includeSubDomains

Date: Wed, 06 Sep 2023 14:31:11 GMT

Content-Length: 17241

Connection: keep-alive

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/

xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"><!-- InstanceBegin template="/Templates/mainTemplate.dwt"

codeOutsideHTMLIsLocked="false" -->

...

$ curl --include https://ict.senecacollege.ca/course/web000

HTTP/1.1 302 Found

Date: Thu, 30 Aug 2018 20:25:28 GMT

Server: Apache/2.4.29 (Unix) OpenSSL/1.0.2l PHP/5.6.30

X-Powered-By: PHP/5.6.30

Expires: Sun, 19 Nov 1978 05:00:00 GMT

Cache-Control: no-cache, must-revalidate, post-check=0, pre-check=0

Location: https://ict.senecacollege.ca/Course/CourseNotFound?=web000

Content-Length: 0

Content-Type: text/html; charset=UTF-8

curl -I https://www.senecacollege.ca/cgi-bin/subjec

HTTP/1.1 404 Not Found

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers
https://en.wikipedia.org/wiki/ISO/IEC_8859-1
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/302

Now a third response code has been returned, 404 Not Found as well as another HTML page telling us our course couldn't be located.

There are dozens of response codes, but they fall into a few categories you should learn:

• 1xx - information responses
• 2xx – successful responses
• 3xx - redirection messages
• 4xx – client error responses
• 5xx – server error responses

Web Browsers
So far we've been communicating with web servers using curl , but a more common tool is a Web Browser.

A good way to think about a browser is as an operating system vs. an application. A web browser provides implementations of the web's
open standards. This means it knows how to communicate HTTP, DNS and other protocols over the network in order to request resources
via URLs. It also contains parsers for the web's programming languages, and knows how to render, execute, and lay-out web content for
use by a user. Browsers also contain lots of security features, and allow users to download and run untrusted code (i.e., code from a
random server on the Internet), without fear of infecting their computers.

Some of the the largest software companies and vendors in the world all have their own browsers:

• Google Chrome for desktop and Android
• Microsoft Edge and Internet Explorer (IE)
• Apple Safari and Safari for iOS
• Mozilla Firefox
• Samsung Internet for Android
• Opera

There are hundreds more, and thousands of different OS and version combinations. There are good stats on usage info for desktop and
mobile, but no one company or browser controls the entire web.

As a web developer, you can't ever know for sure which browser your users will have. This means you have to test your web applications
in different browsers and on different platforms in order to make sure the experience is good for as many people as possible.

The web is also constantly evolving, as new standards are written, APIs and features added to the web platform, and older technologies
retired. A good way to stay on top of what does and doesn't work in a particular browser is to use https://caniuse.com/. This is a service
that keeps track of web platform features, and which browsers do and don't implement it.

For example, you can look at the URL() API, used to work with URLs in JavaScript: https://caniuse.com/#feat=url. Notice that it's widely
supported (green) in most browsers (89.69% at the time of writing), but not supported (red) in some older browsers like Internet Explorer.

Because the web is so big, so complicated, so old, and used by so many people for so many different and competing things, it's common
for things to break, for there to be bugs, and for you to have to adapt your code to work in interesting ways. The good news is, it means
there are lots of jobs for web developers to make sure it all keeps working.

Uniqueness of the Web as a Platform
We've been discussing HTTP as a way to request URLs be transferred between clients and servers. The web is globally distributed set of

• services - requesting data (Text, JSON, XML, binary, etc) to be used in code (vs. looked at by a user)
• resources, pages, documents, images, media - both static and dynamic user viewable resources (web pages), which link to other

similar resources.
• applications - a combination of the above, providing rich user interfaces for working with real-time data or other complex information,

alone or in networked (i.e., collaborative) ways.

https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/404
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/404
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status#Information_responses
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status#Successful_responses
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status#Redirection_messages
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status#Client_error_responses
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status#Server_error_responses
https://www.google.com/chrome/
https://www.microsoft.com/en-ca/windows/microsoft-edge
https://www.apple.com/ca/safari/
https://www.mozilla.org/en-US/firefox/new/
https://www.samsung.com/us/support/owners/app/samsung-internet
https://www.opera.com/
http://gs.statcounter.com/browser-market-share/desktop/worldwide
http://gs.statcounter.com/browser-market-share/mobile/worldwide
https://caniuse.com/
https://developer.mozilla.org/en-US/docs/Web/API/URL
https://developer.mozilla.org/en-US/docs/Web/API/URL
https://caniuse.com/#feat=url
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/JSON
https://developer.mozilla.org/en-US/docs/XML_introduction

The web can be read-only. The web can also be interactive (video games), editable (wikis), personal (blog), and productive (e-commerce).

The web is linkable, which makes it something that can be indexed, searched, navigated, and connected. The web gets more valuable as
its connections grow: just look at all the other pages and resources this page links to itself!

The web allows users to access and run remote applications without needing to install new software. The deployment model of the
web is HTTP. Compare that to traditional software that has to be manually installed on every computer that needs to run it. The same is
true with mobile phones and apps in the various app stores. On the web, updates get installed every time you open a URL.

Question: how many mobile or desktop apps did you install today vs. how many websites did you visit?

The web works on every computing platform. You can access and use the web on desktop and mobile computers, on TVs and
smartwatches, on Windows and Mac, in e-Readers and video game consoles. The web works everywhere, and learning how to develop
software for the web extends your reach into all those platforms.

Front-End Web Development: HTML5, CSS, JavaScript, and
friends
When we talk about programming for the web in a browser, we often refer to this as Front-End Web Development. This is in contrast to
server-side, or Back-End Development. In this course we will be focused on the front-end, leaving back-end for subsequent courses.

The modern web, and modern web browsers, are incredibly powerful. What was once possible only on native operating systems can now
be done within browsers using only web technologies (cf. running Windows 2000 or Doom 3 in a browser window!)

The set of front-end technologies that make this possible, and are commonly referred to as the Web Platform, include:

• HTML5 - the Hypertext Markup Language, and its associated APIs, provide a way to define and structure content
• CSS - Cascading Style Sheets allow developers and designers to create beautiful and functional UIs for the web
• JS - JavaScript allows complex user interaction with web content, and dynamic behaviours in documents and applications.
• DOM - the Document Object Model and its APIs allows scripts and web content to interact at runtime.
• Web APIs - hundreds of APIs provide access to hardware devices, networking, files, 2D and 3D graphics, databases, and so much

more.
• WebAssembly or WASM - a low-level assembly language that can be run in web browsers, allowing code written in C/C++ and other

non-web languages to target the web. For example, Google Earth uses WebAssembly.

In addition to these primary technologies, an increasingly important set of secondary, or third-party technologies are also in play:

• Libraries, Modules - Bootstrap, Leaflet, Three.js, Lodash, ...
• Frameworks - React, Angular, Vue.js, ...
• Tooling - Babel, webpack, ESLint, Prettier
• Languages that "compile" to JavaScript - because JavaScript runs everywhere, many languages target the web by "compiling" (also

know as transpiling) to JavaScript. A good example is TypeScript.

The front-end web stack is also increasingly being used to build software outside the browser, both on desktop and mobile using things
like Electron and Progressive Web Apps (PWA). Visual Studio Code, for example, is written using web technologies and runs on Electron,
which is one of the reasons it works across so many platforms. You can also run it entirely in the browser: vscode.dev.

https://bellard.org/jslinux/vm.html?url=https://bellard.org/jslinux/win2k.cfg&mem=192&graphic=1&w=1024&h=768
http://continuation-labs.com/d3wasm/
https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/HTML5
https://developer.mozilla.org/en-US/docs/Web/CSS
https://developer.mozilla.org/bm/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model
https://developer.mozilla.org/en-US/docs/Web/API
https://developer.mozilla.org/en-US/docs/WebAssembly
https://earth.google.com/web
https://getbootstrap.com/
http://leafletjs.com/
http://threejs.org/
http://lodash.com/
https://reactjs.org/
https://angular.io/
https://vuejs.org/
https://babeljs.io/
https://webpack.js.org/
https://eslint.org/
https://prettier.io/
https://www.typescriptlang.org/
https://electronjs.org/
https://developers.google.com/web/progressive-web-apps/
https://code.visualstudio.com/
https://vscode.dev/

Introduction to
JavaScript
The first front-end web technology we will learn is JavaScript. JavaScript (often
shortened to JS) is a lightweight, interpreted or JIT (i.e., Just In Time) compiled
language meant to be embedded in host environments, for example, web
browsers.

JavaScript looks similar to C/C++ or Java in some of its syntax, but is quite
different in philosophy; it is more closely related to Scheme than C. For
example, JavaScript is a dynamic scripting language supporting multiple
programming styles, from object-oriented to imperative to functional.

JavaScript is one of, if not the most popular programming languages in the
world, and has been for many years. Learning JavaScript well will be a
tremendous asset to any software developer, since so much of the software we
use is built using JS.

JavaScript's many versions: JavaScript is an evolving language, and you'll
hear it referred to by a number of names, including: ECMAScript (or ES),
ES5, ES6, ES2015, ES2017, ..., ES2021, ES2022, etc. ECMA is the European
Computer Manufacturers Association, which is the standards body
responsible for the JS language. As the standard evolves, the specification
goes through different versions, adding or changing features and syntax.
In this course we will primarily focus on ECMAScript 6 (ES6) and newer
versions, which all browsers support. We will also sometimes use new
features of the language, which most browsers support. Language feature
support across browsers is maintained in this table.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Introduction#JavaScript_and_the_ECMAScript_Specification#JavaScript_and_Java
https://en.wikipedia.org/wiki/Scheme_(programming_language)
https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/Imperative_programming
https://en.wikipedia.org/wiki/Functional_programming
https://redmonk.com/sogrady/2023/05/16/language-rankings-1-23/
https://redmonk.com/sogrady/2023/05/16/language-rankings-1-23/
https://medium.freecodecamp.org/whats-the-difference-between-javascript-and-ecmascript-cba48c73a2b5
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Introduction#JavaScript_and_the_ECMAScript_Specification
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Introduction#JavaScript_and_the_ECMAScript_Specification
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Introduction#JavaScript_and_the_ECMAScript_Specification
http://kangax.github.io/compat-table/es2016plus/

JavaScript Resources
Throughout the coming weeks, we'll make use of a number of important online
resources. They are listed here so you can make yourself aware of them, and
begin to explore on your own. All programmers, no matter how experienced,
have to return to these documents on a routine basis, so it's good to know
about them.

• JavaScript on MDN
◦ JavaScript Guide
◦ JavaScript Reference

• Eloquent JavaScript
• JavaScript for impatient programmers (ES2022 edition)

JavaScript Environments
Unlike C, which is compiled to machine code, JavaScript is meant to be run
within a host environment. There are many possible environments, but we will
focus on the following:

• Web Browsers, and their associated developer tools, primarily:
◦ Chrome DevTools
◦ Firefox Developer Tools

• node.js, and its command line REPL (Read-Eval-Print-Loop)

If you haven't done so already, you should install all of the above.

https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference
https://eloquentjavascript.net/
https://exploringjs.com/impatient-js/index.html
https://developers.google.com/web/tools/chrome-devtools/
https://developer.mozilla.org/en-US/docs/Tools
https://nodejs.org/
http://www.tutorialsteacher.com/nodejs/nodejs-console-repl

JavaScript Engines
JavaScript is parsed, executed, and managed (i.e., memory, garbage collection,
etc) by an engine written in C/C++. There are a number of JavaScript engines
available, the most common of which are:

• V8, maintained an used by Google in Chrome and in node.js
• SpiderMonkey, maintained and used by Mozilla in Firefox
• ChakraCore, maintained and used by Microsoft in Edge
• JavaScriptCore, maintained and used by Apple in Safari

These engines, much like car engines, are meant to be used within a larger
context. We will encounter them indirectly via web browsers and in node.js.

It's not important to understand a lot about each of these engines at this point,
other than to be aware that each has its own implementation of the
ECMAScript standards, its own performance characteristics (i.e., some are
faster at certain things), as well as its own set of bugs.

Running JavaScript Programs
JavaScript statements can be stored in an external file with a .js file
extension, or embedded within HTML code via the HTML <script> element. As
a developer, you also have a number of options for writing and executing
JavaScript statements or files:

1. From the command line via node.js. You'll learn more about node.js in
subsequent courses, but we'll also use it sometimes in this course to
quickly try test JavaScript expressions, and to run JavaScript programs
outside the browser.

https://en.wikipedia.org/wiki/JavaScript_engine
https://developers.google.com/v8/
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey
https://github.com/microsoft/chakracore
https://trac.webkit.org/wiki/JavaScriptCore
https://nodejs.org/en/

2. Using Firefox's Developer Tools, and in particular the Web Console,
JavaScript Debugger, and Scratchpad.

3. Using Chrome's DevTools, and in particular the Console and Sources
Debugger

4. Finally, we'll eventually write JavaScript that connects with HTML and CSS
to create dynamic web pages and applications.

Take some time to install and familiarize yourself with all of the methods listed
above.

JavaScript Syntax
Recommend Readings
We will spend a month learning JavaScript, and there is no one best way to do
it. The more you read and experiment the better. The following chapters/pages
give a good overview:

• Chapter 1. Basic JavaScript of Exploring JS (ES5).
• MDN JavaScript Introduction Tutorial
• Chapter 1. Values, Types and Operators and Chapter 2. Program Structure

of Eloquent JavaScript (2nd Ed.).

Important Ideas

• Like C, JavaScript is Case-Sensitive: customerCount is not the same thing
as CustomerCount or customercount

• Name things using camelCase (first letter lowercase, subsequent words

https://developer.mozilla.org/en-US/docs/Tools
https://developer.mozilla.org/en-US/docs/Tools/Web_Console
https://developer.mozilla.org/en-US/docs/Tools/Debugger
https://developer.mozilla.org/en-US/docs/Tools/Scratchpad
https://developers.google.com/web/tools/chrome-devtools/
https://developers.google.com/web/tools/chrome-devtools/console/get-started
https://developers.google.com/web/tools/chrome-devtools/javascript/
https://developers.google.com/web/tools/chrome-devtools/javascript/
http://exploringjs.com/es5/ch01.html
http://exploringjs.com/es5
https://developer.mozilla.org/en-US/docs/Web/JavaScript/A_re-introduction_to_JavaScript
https://eloquentjavascript.net/2nd_edition/01_values.html
https://eloquentjavascript.net/2nd_edition/02_program_structure.html
https://eloquentjavascript.net/2nd_edition/

start with uppercase) vs. snake_case .

• Semicolons are optional in JavaScript, but highly recommended. We'll
expect you to use them in this course, and using them will make working in
C++, Java, CSS, etc. much easier, since you have to use them there.

• Comments work like C/C++, and can be single or multi-line

• Whitespace: JavaScript will mostly ignore whitespace (spaces, tabs,
newlines). In this course we will expect you to use good indentation
practices, and for your code to be clean and readable. Many web
programmers use Prettier to automatically format their code, and we will
too:

// This is a single line comment. NOTE: the space between the //

and first letter.

/*

This is a multi-line comment,

and can be as long as you need.

*/

// This is poorly indented, and needs more whitespace

function add(a, b) {

if (!b) {

return a;

} else {

return a + b;

}

}

// This is much more readable due to the use of whitespace

function add(a, b) {

https://prettier.io/

• JavaScript statements: a JavaScript program typically consists of a series of
statements. A statement is a single-line of instruction made up of objects,
expressions, variables, and events/event handlers.

• Block statement: a block statement, or compound statement, is a group of
statements that are treated as a single entity and are grouped within curly
brackets {...} . Opening and closing braces need to work in pairs. For
example, if you use the left brace { to indicate the start of a block, then
you must use the right brace } to end it. The same matching pairs applies
to single '......' and double "......." quotes to designate text strings.

• Functions are one of the primary building blocks of JavaScript. A function
defines a subprogram that can be called by other parts of your code.
JavaScript treats functions like other built-in types, and they can be stored
in variables passed to functions, returned from functions or generated at
run-time. Learning how to write code in terms of functions will be one of
your primary goals as you get used to JavaScript.

• Variables are declared using the let keyword. You must use the let

keyword to precede a variable name, but you do not need to provide a
type, since the initial value will set the type.

JavaScript version note: JavaScript also supports the var and const

keywords for variable declaration. We will primarily use let in this course,
but be aware of var and const as well, which other developers will use.

let year;

let seasonName = 'Fall';

// Referring to and using syntax:

year = 2023;

console.log(seasonName, year);

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/let
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/let
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/var
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/var
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/const
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/const

• JavaScript Variables: variables must start with a letter (a-zA-z),
underscore (_), or dollar sign ($). They cannot be a reserved (key) word.
Subsequent characters can be letters, numbers, underscores.

NOTE: If you forget to use the let keyword, JavaScript will still allow you to
use a variable, and simply create a global variable. We often refer to this as
"leaking a global," and it should always be avoided:

• Data Types: JavaScript is a typeless language--you don't need to specify a
type for your data (it will be inferred at runtime). However, internally, the
following data types are used:

◦ Number - a double-precision 64-bit floating point number. Using Number

you can work with both Integers and Floats. There are also some
special Number types, Infinity and NaN .

◦ BigInt - a value that can be too large to be represented by a Number

(larger than Number. MAX_SAFE_INTEGER ,) can be represented by a
BigInt . This can easily be done by appending n to the end of an
integer value.

◦ String - a sequence of Unicode characters. JavaScript supports both
single ('...') and double ("...") quotes when defining a String .

◦ Boolean - a value of true or false . We'll also see how JavaScript
supports so-called truthy and falsy values that are not pure Boolean s.

◦ Object , which includes Function , Array , Date , and many more. -
JavaScript supports object-oriented programming, and uses objects and
functions as first-class members of the language.

◦ Symbol - a primitive type in JavaScript that represents a unique and
anonymous value/identifier. They can normally be used as an object's

let a = 6; // GOOD: a is declared with let

b = 7; // BAD: b is used without declaration, and is now a global

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Lexical_grammar#Keywords
https://developer.mozilla.org/en-US/docs/Web/JavaScript/A_re-introduction_to_JavaScript#Overview
https://developer.mozilla.org/en-US/docs/Web/JavaScript/A_re-introduction_to_JavaScript#Numbers
https://developer.mozilla.org/en-US/docs/Web/JavaScript/A_re-introduction_to_JavaScript#Numbers
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Infinity
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Infinity
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/NaN
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/NaN
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/BigInt
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/BigInt
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number/MAX_SAFE_INTEGER
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number/MAX_SAFE_INTEGER
https://developer.mozilla.org/en-US/docs/Web/JavaScript/A_re-introduction_to_JavaScript#Strings
https://developer.mozilla.org/en-US/docs/Web/JavaScript/A_re-introduction_to_JavaScript#Strings
https://developer.mozilla.org/en-US/docs/Web/JavaScript/A_re-introduction_to_JavaScript#Functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/A_re-introduction_to_JavaScript#Functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Symbol
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Symbol

unique properties.
◦ null - a value that means "this is intentionally nothing" vs. undefined

◦ undefined - a special value that indicates a value has never been
defined.

Declaration Type Value

let s1 = "some text"; String "some text"

let s2 = 'some text'; String "some text"

let s3 = '172'; String "172"

let s4 = '172' + 4; String
"1724" (concatenation vs.
addition)

let n1 = 172; Number 172 (integer)

let n2 = 172.45; Number 172.45 (double-precision float)

let n3 =

9007199254740993n;
BigInt 9007199254740993n (integer)

let b1 = true; Boolean true

let b2 = false; Boolean false

let b3 = !b2; Boolean true

let s = Symbol("Sym"); symbol Symbol(Sym)

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/null
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/null
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/undefined
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/undefined

Declaration Type Value

let c; undefined undefined

let d = null; object null

Consider a simple program from your C course, and how it would look in
JavaScript

Now the same program in JavaScript:

// Area of a Circle, based on https://scs.senecac.on.ca/~btp100/

pages/content/input.html

// area.c

#include <stdio.h> // for printf

int main(void)

{

const float pi = 3.14159f; // pi is a constant float

float radius = 4.2; // radius is a float

float area; // area is a float

area = pi * radius * radius; // calculate area from radius

printf("Area = %f\n", area); // copy area to standard output

return 0;

}

const pi = 3.14159; // pi is a Number

let radius = 4.2; // radius is a Number

We could also have written it like this, using Math.PI , which we'll learn about
later:

• Common JavaScript Operators (there are more, but these are a good start):

Operator Operation Example

+
Addition of
Number s 3 + 4

+
Concatenation
of String s "Hello " + "World"

-
Subtraction of
Number s x - y

*
Multiplication of
Number s 3 * n

/
Division of
Number s 2 / 4

% Modulo 7 % 3 (gives 1 remainder)

let radius = 4.2; // radius is a Number

let area = Math.PI * radius * radius; // calculate area from

radius

console.log('Area', area); // print area to the console

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/PI
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/PI
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Expressions_and_Operators

Operator Operation Example

++
Post/Pre
Increment x++ , ++x

--
Post/Pre
Decrement x-- , --x

= Assignment a = 6

+=
Assignment with
addition

a += 7 same as a = a + 7 . Can be used
to join String s too

-=
Assignment with
subtraction a -= 7 same as a = a - 7

*=
Assignment with
multiplication a *= 7 same as a = a * 7

/=
Assignment with
division a /= 7 same as a = a / 7

&& Logical AND if(x > 3 && x < 10) both must be true

() Call/Create
() invokes a function, f() means invoke/
call function stored in variable f

|| Logical OR
if(x === 3 || x === 10) only one must
be true

Operator Operation Example

| Bitwise OR 3.1345|0 gives 3 as an integer

! Logical NOT if(!(x === 2)) negates an expression

== Equal 1 == 1 but also 1 == "1" due to type
coercion

=== Strict Equal
1 === 1 but 1 === "1" is not true due
to types. Prefer ===

!= Not Equal 1 != 2 , with type coercion

!== Strict Not Equal 1 !== "1" . Prefer !==

> Greater Than 7 > 3

>=
Greater Than Or
Equal 7 >=7 and 7 >= 3

< Less Than 3 < 10

<=
Less Than Or
Equal 3 < 10 and 3 <=3

typeof Type Of
typeof "Hello" gives 'string' , typeof

6 gives 'number'

cond ? a Ternary status = (age >= 18) ? 'adult' :

Operator Operation Example

: b 'minor';

JavaScript version note: you may encounter => in JavaScript code, which
looks very similar to <= or >= . If you see => it is an arrow function, which
is new ES6 syntax for declaring a function expression. We will slowly
introduce this syntax, especially in later courses.

• JavaScript is dynamic, and variables can change value and type at runtime:

• JavaScript is a garbage collected language. Unlike C, memory
automatically gets freed at runtime when variables are not longer in scope
or reachable. We still need to be careful not to leak memory (i.e., hold onto
data longer than necessary, or forever) and block the garbage collector
from doing its job.

• Strings: JavaScript doesn't distinguish between a single char and a multi-
character String --everything is a String . You define a String using
either single ('...'), double ("...") quotes. Try to pick one style and
stick with it within a given file/program vs. mixing them.

• JavaScript version note: newer versions of ECMAScript also allow for the

let a; // undefined

a = 6; // 6, Number

a++; // 7, Number

a--; // 6, Number

a += 3; // 9, Number

a = 'Value=' + a; // "Value=9", String

a = !!a; // true, Boolean

a = null; // null

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Memory_Management
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String

use of template literals. Instead of ' or " , a template literal uses `
(backticks), and you can also interpolate expressions.

• A JavaScript expression is any code (e.g., literals, variables, operators, and
expressions) that evaluates to a single value. The value may be a Number ,
String , an Object , or a logical value.

• JavaScript execution flow is determined using the following four (4) basic
control structures:

◦ Sequential: an instruction is executed when the previous one is
finished.

◦ Conditional: a logical condition is used to determine which instruction
will be executed next - similar to the if and switch statements in C
(which JavaScript also has).

◦ Looping: a series of instructions are repeatedly executed until some
condition is satisfied - similar to the for and while statements in C
(which JavaScript also has). There are many different types of loops in
JavaScript: for example for loops and while loops, as well as ways to
break out of loops or skip iterations with continue . We'll cover other
types as we learn about Object and Array .

◦ Transfer: jump to, or invoke a different part of the code - similar to
calling a function in C.

let a = 10 / 2; // arithmetic expression

let b = !(10 / 2); // logical expression evaluates to false

let c = '10 ' + '/' + ' 2'; // string, evaluates to "10 / 2"

let f = function () {

return 10 / 2;

}; // function expression, f can now be called via the () operator

let d = f(); // f() evaluates to 10/2, or the Number 5

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals#Expression_interpolation
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Expressions_and_Operators#Expressions
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Building_blocks/conditionals
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Building_blocks/conditionals
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Building_blocks/Looping_code
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Building_blocks/Looping_code#The_standard_for_loop
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Building_blocks/Looping_code#The_standard_for_loop
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Building_blocks/Looping_code#while_and_do_..._while
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Building_blocks/Looping_code#while_and_do_..._while
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Building_blocks/Looping_code#Exiting_loops_with_break
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Building_blocks/Looping_code#Exiting_loops_with_break
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Building_blocks/Looping_code#Skipping_iterations_with_continue
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Building_blocks/Looping_code#Skipping_iterations_with_continue
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Building_blocks/Functions

/**

* 1. Sequence example: each statement is executed one after the

other

**/

let a = 3;

let b = 6;

let c = a + b;

/**

* 2. Conditional examples: a decision is made based on the

evaluation of an expression,

* and a code path (or branch) taken.

**/

let grade;

let mark = 86;

if (mark >= 90) {

grade = 'A+';

} else if (mark >= 80) {

grade = 'A';

} else if (mark >= 70) {

grade = 'B';

} else if (mark >= 60) {

grade = 'C';

} else if (mark >= 50) {

grade = 'D';

} else {

grade = 'F';

}

switch (grade) {

case 'A+':

// do these steps if grade is A+

break;

case 'A':

// do these steps if grade is A

break;

Practice Exercises
Try to solve each of the following using JavaScript. If you need to print

something, use console.log() , which will print the argument(s) you give it.

1. Create a variable label and assign it the value "senecacollege" . Create
another variable tld and assign it "ca" . Create a third variable
domainName that combines label and tld to produce the value
"senecacollege.ca" .

2. Create a variable isSeneca and assign it a boolean value (true or false)
depending on whether or not domainName is equal to "senecacollege.ca" .
HINT: use === and don't write true or false directly.

3. Create a variable isNotSeneca and assign it the inverse boolean value of
isSeneca . HINT: if isSeneca is true , isNotSeneca should be false .

4. Create four variables byte1 , byte2 , byte3 , byte4 , and assign each of
these a value in the range 0-255 .

5. Convert byte1 to a String using .toString() , and console.log() the
result. What happens if you use toString(2) or toString(16) instead?

6. Create a variable ipAddress and assign it the value of combining your four
byteN variables together, separated by "." . For example:
"192.168.2.1" .

7. Create a variable ipInt and assign it the integer value of bit-shifting (<<)
and adding your byteN variables. HINT: your ipInt will contain 32 bits,
the first byte needs to be shifted 24 bit positions (<< 24) so it occupies
32-25, the second shifted 16, the third 8.

8. Create a variable ipBinary that contains the binary representation of the
ipInt value. HINT: use .toString(2) to display the number with 1 and 0

only.

9. Create a variable statusCode , and assign it the value for the "I'm a teapot"
HTTP status code. HINT: see https://developer.mozilla.org/en-US/docs/Web/
HTTP/Status

10. Write an If statement that checks to see if your statusCode is a 4xx

client error. HINT: use the < , > , >= , and/or <= operators to test the value

11. Write a switch statement that checks your statusCode for all possible
1xx information responses. In each case, you should console.log() the
response text associated with the status code, or "unknown information

response" if the status code is not known.

12. Write a function is2xx(status) which takes a status code status (e.g.,
200) and returns true if the status code is a valid 2xx code.

13. Create a variable studentName and assign your name. Create another
variable studentAge and assign it your age. Use console.log() to print
out a sentence that includes both variables, like "Alice is 20 years

old." .

14. Create a variable isEven and assign it a boolean value (true or false)
depending on whether a given number num is even or not. HINT: use the
modulus operator % .

15. Create a variable isOdd and assign it the inverse boolean value of isEven .
HINT: if isEven is true , isOdd should be false .

16. Create a variable radius and assign it a value of 10 . Calculate the area of

https://developer.mozilla.org/en-US/docs/Web/HTTP/Status
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status#Client_error_responses
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status#Client_error_responses
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status#Client_error_responses
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status#Information_responses
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status#Information_responses
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status#Successful_responses

a circle with this radius and assign the result to a variable area . HINT: use
Math.PI and the formula area = πr^2 .

17. Create a variable temperatureInCelsius and assign it a value. Convert
this temperature to Fahrenheit and assign the result to a variable
temperatureInFahrenheit . HINT: use the formula F = C * 9/5 + 32 .

18. Create a variable heightInFeet and assign it a value. Convert this height
to meters and assign the result to a variable heightInMeters . HINT: use
the conversion factor 1 foot = 0.3048 meters .

19. Create a variable seconds and assign it a value. Convert this time to
minutes and seconds (e.g., 90 seconds becomes 1 minute and 30 seconds)
and assign the result to two variables minutes and remainingSeconds .

20. Create a variable score and assign it a value. Write an if statement that
checks if the score is an A (90-100), B (80-89), C (70-79), D (60-69), or F
(below 60) and assigns the result to a variable grade .

21. Write a switch statement that checks the value of a variable day and
console.log() s whether it is a weekday or weekend. HINT: day can be a
value from 1 (Monday) to 7 (Sunday).

22. Write a function isPositive(num) which takes a number num and returns
true if the number is positive and false otherwise.

23. Write a function isLeapYear(year) which takes a year year and returns
true if the year is a leap year and false otherwise. HINT: a leap year is
divisible by 4, but not by 100, unless it is also divisible by 400.

24. Write a function getDayOfWeek(day) which takes a number day (from 1 to
7) and returns the day of the week as a string (e.g., "Monday").

25. Write a function getFullName(firstName, lastName) which takes two
strings firstName and lastName and returns the full name as a single
string.

26. Write a function getCircleArea(radius) which takes a number radius

and returns the area of a circle with that radius.

27. Write a function getHypotenuse(a, b) which takes two numbers a and b

(the lengths of the two sides of a right triangle) and returns the length of
the hypotenuse. HINT: use the Pythagorean theorem and Math.sqrt() to
calculate the square root.

After you try writing these yourself, take a look at a possible solution.

https://patrick-crawford.github.io/WebProgrammingPrinciples/assets/files/practice-exercises-solution-fff774f32c8946eb910279c4b9fafb8a.js

Functions
A function is a subprogram, or a smaller portion of code that can be called (i.e.,
invoked) by another part of your program, another function, or by the
environment in response to some user or device action (e.g., clicking a button,
a network request, the page closing). Functions can take values (i.e.,
arguments) and may return a value.

Functions are first-class members of JavaScript, and play a critical role in
developing JavaScript programs. JavaScript functions can take other functions
as arguments, can return functions as values, can be bound to variables or
Object properties, and can even have their own properties. We'll talk about
more of this when we visit JavaScript's object-oriented features.

Learning to write code in terms of functions takes practice. JavaScript supports
functional programming. Web applications are composed of lots of small
components that need to get wired together using functions, have to share
data (i.e., state), and interoperate with other code built into the browser, or in
third-party frameworks, libraries, and components.

We use JavaScript functions in a number of ways. First, we encapsulate a series
of statements into higher-order logic, giving a name to a set of repeatable
steps we can call in different ways and places in our code. Second, we use
them to define actions to be performed in response to events, whether user
initiated or triggered by the browser. Third, we use them to define behaviours
for objects, what is normally called a member function or method. Fourth, we
use them to define constructor functions, which are used to create new
objects. We'll look at all of these in the coming weeks.

Before we dive into that, we'll try to teach you that writing many smaller
functions is often better than having a few large ones. Smaller code is easier to

https://en.wikipedia.org/wiki/Functional_programming
https://martinfowler.com/bliki/FunctionLength.html
https://dzone.com/articles/rule-30-%E2%80%93-when-method-class-or

test, easier to understand, and generally has fewer bugs.

User-defined Functions
JavaScript has many built-in functions, which we'll get to below; however, it
also allows you to write your own and/or use functions written by other
developers (libraries, frameworks).

These user-defined functions can take a number of forms.

Function Declarations
The first is the function declaration, which looks like this:

Here the function keyword initiates a function declaration, followed by a
name, a parameter list in round parenthesis, and the function's body
surrounded by curly braces. There is no semi-colon after the function body.

// The most basic function, a so-called NO OPERATION function

function noop() {}

// square function accepts one parameter `n`, returns its value

squared.

function square(n) {

return n * n;

}

// add function accepts two parameters, `a` and `b`, returns their

sum.

function add(a, b) {

return a + b;

}

https://dzone.com/articles/rule-30-%E2%80%93-when-method-class-or
https://dubroy.com/blog/method-length-are-short-methods-actually-worse/

Function Expressions
The second way to create a function is using a function expression. Recall that
expressions evaluate to a value: a function expression evaluates to a function

Object. The resulting value is often bound (i.e., assigned) to a variable, or used
as a parameter.

A few things to note:

• The function's name is often omitted. Instead we return an anonymous
function and bind it to a variable. We'll access it again via the variable
name. In the case of recursive functions, we sometimes include it to make
it easier for functions to call themselves. You'll see it done both ways.

• We did use a semi-colon at the end of our function expression. We do this
to signify the end of our assignment statement let add = ... ; .

• In general, function declarations are likely a better choice (when you can
choose) due to subtle errors introduced with declaration order and hosting
(see below); however, both are used widely and are useful.

let noop = function () {};

let square = function (n) {

return n * n;

};

let add = function add(a, b) {

return a + b;

};

Arrow Functions
Modern JavaScript also introduces a new function syntax called an Arrow
Function or "Fat Arrow". These functions are more terse, using the => notation
(not to be confused with the <= and >= comparison operators):

When you see let add = (a, b) => a + b; it is short-hand for let add =

function(a, b) { return a + b; } , where => replaces the function

keyword and comes after the parameter list, and the return keyword is
optional, when functions return a single value.

Arrow functions also introduce some new semantics for the this keyword,
which we'll address later.

You should be aware of Arrow functions, since many web developers use them
heavily. However, don't feel pressure to use them yet if you find their syntax
confusing.

Parameters and arguments

Function definitions in both cases take parameter lists, which can be empty,
single, or multiple in length. Just as with variable declaration, no type
information is given:

let noop = () => {};

let square = (n) => n * n;

let add = (a, b) => a + b;

https://eloquentjavascript.net/03_functions.html#h_/G0LSjQxoo
https://eloquentjavascript.net/03_functions.html#h_/G0LSjQxoo

A function can accept any number of arguments when it is called, including
none. This would break in many other languages, but not JavaScript:

Because we can invoke a function with any number of arguments, we have to
write our functions carefully, and test things before we make assumptions.
How can we deal with a caller sending 2 vs. 10 values to our function?

One way we do this is using the built-in arguments Object.

Every function has an implicit arguments variable available to it, which is an
array-like object containing all the arguments passed to the function. We can
use arguments.length to obtain the actual number of arguments passed to
the function at runtime, and use array index notation (e.g., arguments[0]) to
access an argument:

function emptyParamList() {}

function singleParam(oneParameter) {}

function multipleParams(one, two, three, four) {}

function log(a) {

console.log(a);

}

log('correct'); // logs "correct"

log('also', 'correct'); // logs "also"

log(); // logs undefined

function log(a) {

console.log(arguments.length, a, arguments[0]);

}

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/arguments
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/arguments

We can use a loop to access all arguments, no matter the number passed:

You may have wondered previously how console.log() can work with one,
two, three, or more arguments. The answer is that all JavaScript functions work
this way, and you can use it to "overload" your functions with different
argument patterns, making them useful in more than one scenario.

Parameters and ...

Modern JavaScript also supports naming the "rest" of the parameters passed to
a function. These Rest Parameters allow us to specify that all final arguments
to a function, no matter how many, should be available to the function as a
named Array .

There are some advantages to not using the implicit arguments keyword,
which rest parameters provide.

We can convert the example above to this, naming our arbitrary list of
"numbers":

function sum() {

const count = arguments.length;

let total = 0;

for (let i = 0; i < count; i++) {

total += arguments[i];

}

return total;

}

sum(1); // 1

sum(1, 2); // 3

sum(1, 2, 3, 4); // 10

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/rest_parameters
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/rest_parameters#Difference_between_rest_parameters_and_the_arguments_object

Dealing with Optional and Missing Arguments
Because we can change the number of arguments we pass to a function at
runtime, we also have to deal with missing data, or optional parameters.
Consider the case of a function to calculate a player's score in a video game. In
some cases we may want to double a value, for example, as a bonus for doing
some action a third time in a row:

Here we call updateScore three different times, sometimes with 2 arguments,
and once with 3. Our updateScore function has been written so it will work in
both cases. We've used a conditional ternary operator to decide whether or not
to add an extra bonus score. When we say bonus ? ... : ... we are
checking to see if the bonus argument is truthy or falsy--that is, did the caller
provide a value for it? If they did, we do one thing, if not, we do another.

function sum(...numbers) {

let total = 0;

for (let i = 0; i < numbers.length; i++) {

total += numbers[i];

}

return total;

}

function updateScore(currentScore, value, bonus) {

return bonus ? currentScore + value * bonus : currentScore +

value;

}

updateScore(10, 3);

updateScore(10, 3);

updateScore(10, 3, 2);

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Conditional_Operator

Here's another common way you'll see code like this written, using a default
value:

In this case, before we use the value of bonus , we do an extra check to see if it
actually has a value or not. If it does, we use that value as is; but if it doesn't,
we instead assign it a value of 1 . Then, our calculation will always work, since
multiplying the value by 1 will be the same as not using a bonus.

The idiom bonus = bonus || 1 is very common in JavaScript. It uses the
Logical Or Operator || to test whether bonus evaluates to a value or not, and
prefers that value if possible to the fallback default of 1 . We could also have
written it out using an if statements like these:

function updateScore(currentScore, value, bonus) {

// See if `bonus` is truthy (has a value or is undefined) and

use it, or default to 1

bonus = bonus || 1;

return currentScore + value * bonus;

}

function updateScore(currentScore, value, bonus) {

if (bonus) {

return currentScore + value * bonus;

}

return currentScore + value;

}

function updateScore(currentScore, value, bonus) {

if (!bonus) {

bonus = 1;

}

return currentScore + value * bonus;

}

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Logical_Operators#Logical_OR_()
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Logical_Operators#Logical_OR_()

JavaScript programmers tend to use the bonus = bonus || 1 pattern because
it is less repetitive, using less code, and therefore less likely to introduce bugs.
We could shorten it even further to this:

Because this pattern is so common, modern JavaScript has added a built-in
way to handle Default Parameters. Instead of using || notation in the body of
the function, we can specify a default value for any named parameter when it
is declared. This frees us from having to check for, and set default values in the
function body. Using default parameters, we could convert our code above to
this:

Now, if bonus has a value (i.e., is passed as a parameter), we use it; otherwise,
we use 1 as a default.

Return Value
Functions always return a value, whether implicitly or explicitly. If the return

keyword is used, the expression following it is returned from the function. If it is
omitted, the function will return undefined :

function updateScore(currentScore, value, bonus) {

return currentScore + value * (bonus || 1);

}

function updateScore(currentScore, value, bonus = 1) {

return currentScore + value * bonus;

}

function implicitReturnUndefined() {

// no return keyword, the function will return `undefined`

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Default_parameters

Function Naming
Functions are typically named using the same rules we learned for naming any
variable: camelCase and using the set of valid letters, numbers, etc. and
avoiding language keywords.

Function declarations always give a name to the function, while function
expressions often omit it, using a variable name instead:

// Name goes after the `function` keyword in a declaration

function validateUser() {

...

}

// Name is used only at the level of the bound variable, function

is anonymous

let validateUser = function() {

...

};

// Name is repeated, which is correct but not common. Used with

recursive functions

let validateUser = function validateUser() {

...

};

// Names are different, which is also correct, but not common as

it can lead to confusion

let validateUser = function validate() {

// the validate name is only accessible here, within the

function body

...

};

Because JavaScript allows us to bind function objects (i.e., result of function
expressions) to variables, it is common to create functions without names, but
immediately pass them to functions as arguments. The only way to use this
function is via the argument name:

We can also use functions declared via function declarations used this way,

// The parameter `fn` will be a function, and `n` a number

function execute(fn, n) {

// Call the function referred to by the argument (i.e, variable)

`fn`, passing `n` as its argument

return fn(n);

}

// 1. Call the `execute` function, passing an anonymous function,

which squares its argument, and the value 3

execute(function (n) {

return n * n;

}, 3);

// 2. Same thing as above, but with different formatting

execute(function (n) {

return n * n;

}, 3);

// 3. Same thing as above, using an Arrow Function

execute((n) => n * n, 3);

let doubleIt = function (num) {

return num * 2;

};

// 4. Again call `execute`, but this time pass `doubleIt` as the

function argument

execute(doubleIt, 3);

and bind them to variables:

JavaScript treats functions like other languages treat numbers or booleans, and
lets you use them as values. This is a very powerful feature, but can cause
some confusion as you get started with JavaScript.

You might ask why we would ever choose to define functions using variables.
One common reason is to swap function implementations at runtime,
depending on the state of the program. Consider the following code for
displaying the user interface depending on whether the user is logged in or
not:

function greeting(greeting, name) {

return greeting + ' ' + name;

}

var sayHi = greeting; // also bind a reference to greeting to

sayHi

// We can now call `greeting` either with `greeting()` or

`sayHi()`

console.log(greeting('Hello', 'Steven'));

console.log(sayHi('Hi', 'Kim'));

// Display partial UI for guests and non-authenticated users,

hiding some features

function showUnauthenticatedUI() {

...

}

// Display full UI for authenticated users

function showAuthenticatedUI() {

...

Invoking Functions, the Execution Operator
In many of the examples above, we've been invoking (i.e., calling, running,
executing) functions but haven't said much about it. We invoke a function by
using the () operator:

In the code above, f is a variable that is assigned the value returned by a
function expression. This means f is a regular variable, and we can use it like
any other variable. For example, we could create another variable and share its
value:

Both f and f2 refer to the the same function object. What is the difference
between saying f vs. f() in the line let f2 = f; ? When we write f() we
are really saying, "Get the value of f (the function referred to) and invoke it."
However, when we write f (without ()), we are saying, "Get the value of f

(the function referred to)" so that we can do something with it (assign it to
another variable, pass it to a function, etc).

The same thing is true of function declarations, which also produce function

let f = function () {

console.log('f was invoked');

};

f();

let f = function () {

console.log('f was invoked');

};

let f2 = f;

f(); // invokes the function

f2(); // also invokes the function

Objects:

The distinction between referring to a function object via its bound variable
name (f) vs invoking that same function (f()) is important, because
JavaScript programs treat functions as data, just as you would a Number .
Consider the following:

Here the checkUserName function takes two arguments: the first a String for a
username; the second an optional (i.e., may not exist) function to use when
validating this username. Depending on whether or not we are passed a
function for customValidationFn , we will either use it, or use a default
validation function (defined somewhere else).

Notice the line if(customValidationFn && typeof customValidationFn ===

'function') { where customValidationFn is used like any other variable

function f() {

console.log('f was invoked');

}

let f2 = f;

f2(); // also invokes the function

function checkUserName(userName, customValidationFn) {

// If `customValidationFn` exists, and is a function, use that

to validate `userName`

if (customValidationFn && typeof customValidationFn ===

'function') {

return customValidationFn(userName);

}

// Otherwise, use a default validation function

return defaultValidationFn(userName);

}

(accessing the value it refers to vs. doing an invocation), to check if it has a
value, and if its value is actually a function. Only then is it save to invoke it.

It's important to remember that JavaScript functions aren't executed until they
are called via the invocation operator, and may also be used as values without
being called.

Built-in/Global Functions
JavaScript provides a small number of built-in global functions for working with
its data types, for example:

• parseInt()

• parseFloat()

• isNaN()

• isFinite()

• decodeURI()

• decodeURIComponent()

• encodeURI()

• encodeURIComponent()

There are also global functions that exist for historical reasons, but should be
avoided for performance, usability, and/or security reasons:

• eval() dangerous to parse and run user-defined strings
• prompt() and alert() synchronous calls that block the UI thread.

Most of JavaScripts "standard library" comes in the form of methods on global
objects vs. global functions. A method is a function that is bound to a variable
belonging to an object, also known as a property. We'll be covering these in

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects#Function_properties
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/parseInt
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/parseInt
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/parseFloat
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/parseFloat
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/isNaN
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/isNaN
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/isFinite
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/isFinite
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/decodeURI
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/decodeURI
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/decodeURIComponent
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/decodeURIComponent
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/encodeURI
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/encodeURI
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/encodeURIComponent
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/encodeURIComponent
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/eval
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/eval
https://developer.mozilla.org/en-US/docs/Web/API/Window/prompt
https://developer.mozilla.org/en-US/docs/Web/API/Window/prompt
https://developer.mozilla.org/en-US/docs/Web/API/Window/alert
https://developer.mozilla.org/en-US/docs/Web/API/Window/alert

more depth later, but here are some examples

• console.* . There are quite a few worth learning, but here are some to get
you started: _ console.log() , console.warn() , and console.error() _
console.assert() _ console.count() _ console.dir()

• Math.*

◦ Math.abs()

◦ Math.max()

◦ Math.min()

◦ Math.random()

◦ Math.round()

• Date.*

◦ Date.now()

◦ Date.getTime()

◦ Date.getMonth()

◦ Date.getDay()

• JSON.*

◦ JSON.parse()

◦ JSON.stringify()

Much of web programming is done using Objects and calling their methods.
JavaScript is a small language, but the ecosystem of Objects , APIs, libraries,
and frameworks allows it to do anything.

Suggested Readings
• ExploringJS, Chapter 15. Functions and Chapter 16. Variables: Scopes,

Environments, and Closures
• Eloquent JavaScript, Chapter 3. Functions

https://developer.mozilla.org/en-US/docs/Web/API/console
https://developer.mozilla.org/en-US/docs/Web/API/console
https://developer.mozilla.org/en-US/docs/Web/API/Console/log
https://developer.mozilla.org/en-US/docs/Web/API/Console/log
https://developer.mozilla.org/en-US/docs/Web/API/Console/warn
https://developer.mozilla.org/en-US/docs/Web/API/Console/warn
https://developer.mozilla.org/en-US/docs/Web/API/Console/error
https://developer.mozilla.org/en-US/docs/Web/API/Console/error
https://developer.mozilla.org/en-US/docs/Web/API/Console/assert
https://developer.mozilla.org/en-US/docs/Web/API/Console/assert
https://developer.mozilla.org/en-US/docs/Web/API/Console/count
https://developer.mozilla.org/en-US/docs/Web/API/Console/count
https://developer.mozilla.org/en-US/docs/Web/API/Console/dir
https://developer.mozilla.org/en-US/docs/Web/API/Console/dir
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/abs
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/abs
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/max
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/max
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/min
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/min
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/random
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/random
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/round
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/round
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date/now
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date/now
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date/getTime
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date/getTime
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date/getMonth
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date/getMonth
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date/getDay
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date/getDay
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/JSON
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/JSON
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/JSON/parse
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/JSON/parse
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/JSON/stringify
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/JSON/stringify
http://exploringjs.com/es5/ch15.html
http://exploringjs.com/es5/ch16.html
http://exploringjs.com/es5/ch16.html
https://eloquentjavascript.net/03_functions.html

• Functions Guide and Reference on MDN.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions

Scope
JavaScript variables were historically declared with the var keyword. Modern
JavaScript has switched to let , const . The way each works is different, and
it's important to understand these differences.

We often assign a value when we declare it, though we don't have to do both
at once:

A variable always has a scope, which is the location(s) in the code where it is
usable. Consider the variables total and value , as well as the add function
below:

let x; // declared, no assignment (value is `undefined`)

x = 7; // assignment of previously declared variable

let y = x; // declaration and assignment combined

var total = 7; // global variable, accessible everywhere

function add(n) {

var value = total + n; // local variable, accessible anywhere

within the function only

return value;

}

console.log('Total is', total); // Works, because `total` is in

the same scope

console.log('Value is', value); // `undefined`, since `value`

isn't defined in this scope

console.log('New Total', add(16)); // Works, because `add` is

defined in the same scope

When using the var keyword, variables use function scope, while variables
declared with let and const use block scope. Coming from C/C++, using let

and const will likely feel more familiar`:

Now in JavaScript:

Because variables declared using var have function scope, programmers
tended to define them at the top of their functions. They don't strictly need to
do this, since JavaScript will hoist or raise all variables declared with var in a
function to the top of the function's scope:

int main()

{

{

int x = 10; // x is declared with block scope

}

{

printf("%d", x); // Error: x is not accessible here

}

return 0;

}

function main() {

{

var x = 10; // x is declared in a block, but is scoped to

`main`

}

{

console.log(x); // works, because `x` is accessible everywhere

in `main`

}

}

At runtime, this will be transformed into the following:

This also happens when we forget to declare a local variable:

At runtime, this will be transformed into the following:

function f() {

var y = x + 1;

var x = 2;

}

function f() {

var x; // declaration is hoisted (but not assignment)

to the top

var y = x + 1; // `NaN`, since `undefined` + 1 can't be

resolved

x = 2; // note: `x` is not declared above, only the

assignment is now here

function f() {

x = 2; // `x` is assigned a value, but not declared

return x + 1;

}

var x; // `x` is not found in the scope of `f`, so it becomes

global

function f() {

x = 2;

return x + 1;

}

The previous example introduces another important concept with JavaScript
scopes, namely, that scopes can be nested within one another. Hoisting is
moving variable declarations to the beginning of a scope. For example,
function declarations are hoisted completely, which means we can call a
function before we declare it.

Many of the confusing aspects of function scope and hoisting are solved by
using let and const , which work at the block level instead. Consider these
two loops:

In the preceding code, the scope of i is different in version 1 vs. 2. In version
1, the declaration of i will actually cause a variable to be created in the scope
of the owning function. This may or may not be what you expect (i.e., the
variable i will exist outside the loop). In version 2, this is not the case, and i

f(); // this will work, as f's declaration gets hoisted

function f() {}

f(); // this will also work, because f has been declared as you

expect.

g(); // this will not work, since g's declaration will be hoisted,

but not the assignment.

var g = function () {};

// Version 1 using var

for (var i = 0; i < 10; i++) {

console.log('The value of i is ' + i);

}

// Version 2 using let

for (let i = 0; i < 10; i++) {

console.log('The value of i is ' + i);

}

is scoped to the function body only (i.e., you can't access it before or after the
loop).

We're discussing both function and block scopes because JavaScript supports
each of them, and code you'll work on will use both methods. It's important to
understand each approach.

For new code that you write, you are encouraged to prefer let and const and
use block scope.

Overwriting Variables in Child
Scopes
Since variables defined with var have function scope, and because functions
can be nested, we have to be careful when naming our variables and
arguments so as to not overwrite a variable in a parent scope. Or, we can use
this to temporarily do exactly that. In both cases, we need to understand how
nested scopes work.

Consider the the following code, where a variable named x is used in three
different scopes. What will be printed to the console when child is called?

var x = 1;

function parent() {

var x = 2;

function child(x) {

console.log(x);

}

The first declaration of x creates a global variable (i.e., available in every
scope). Then, in parent we re-declare x , creating a new local variable, which
overwrites (or hides) the global variable x in this scope (i.e., within the body of
parent). Next, we define yet another scope for child , which also uses x as
the name of its only argument (essentially another local variable). When we do
child(3) , we are binding the value 3 to the x argument defined for the
scope of child , and in so doing yet again overwriting the parent x . In the end,
the console will show 3 .

We can do this in error as well, and cause unexpected behaviour:

Here we expect to see 100 but instead will get 5 on the console. The
problem is that we have redefined, and thus overwritten total inside the
increase function. During the call to increase , the new local variable total

will be used, and then go out of scope. After the function completes, the
original global variable total will again be used.

Closures
A closure is a function that has closed over a scope, retaining this scope even
after it would otherwise disappear through the normal rules of execution. In the
following function, the variable x goes out of scope as soon as the function

var total = 5;

function increase(n) {

var total = n + n;

}

increase(50);

console.log(total);

finishes executing:

In JavaScript, functions have access not only to their own local variables, but
also to any variables in their parents' scope. That is, if a variable is used
(referenced) but not declared in a function, JavaScript will visit the parent
scope to find the variable. This can happen for any number of child/parent
levels up to the global level.

The following is an example of this, and probably one you've seen before:

Consider this example:

function f() {

var x = 7;

return x * 2;

// After this return, and f completes, `x` will no longer be

available.

}

var x = 7;

function f() {

return x * 2; // `x` not declared here, JS will look in the

parent scope (global)

}

function parent() {

var x = 7;

function child() {

return x * 2;

}

Here x is used in child , but declared in parent . The child function has
access to all variables in its own scope, plus those in the parent scope. This
nesting of scopes relies on JavaScript's function scope rules, and allows us to
share data.

Sometimes we need to capture data in a parent scope, and retain it for a
longer period of time than would otherwise be granted for a given invocation.
Consider this example:

Here the createAccumulator function takes an argument value , the initial
value to use for an accumulator function. It returns an anonymous function
which takes a value n (a Number) and adds it to the value before returning it.
The add function is created by invoking createAccumulator with the initial
value of 10 . The function that is returned by createAccumulator has access
to value in its parent's scope. Normally, value would be destroyed as soon as
createAccumulator finished executing. However, we have created a closure to
capture the variable value in a scope that is now attached to the function
we're creating and returning. As long as the returned function exists (i.e., as
long as add holds on to it), the variable value will continue to exist in our
child function's scope: the variables that existed when this function was
created continue to live on like a memory, attached to the lifetime of the

function createAccumulator(value) {

return function (n) {

value += n;

return value;

};

}

var add = createAccumulator(10);

add(1); // returns 11

add(2); // returns 13

returned function.

Closures make it possible to associate some data (i.e., the environment) with a
function that can then operate on that data. We see similar strategies in pure
object-oriented languages, where data (properties) can be associated with an
object, and functions (methods) can then operate on that data. Closures play a
somewhat similar role, however, they are more lightweight and allow for
dynamic (i.e., runtime) associations.

By connecting data and functionality, closures help to reduce global variables,
provide ways to "hide" data, allow a mechanism for creating private
"methods", avoid overwriting other variables in unexpected ways.

As we go further with JavaScript and web programming, we will encounter
many instances where closures can be used to manage variable lifetimes, and
associated functions with specific objects. For now, be aware of their existence,
and know that it is an advanced concept that will take some time to fully
master. This is only our first exposure to it.

Another way we'll see closures used, is in conjunction with Immediately-
Invoked Function Expressions (IIFE). Consider the following rewrite of the code
above:

let add = (function (value) {

return function (n) {

value += n;

return value;

};

})(10);

add(1); // returns 11

add(2); // returns 13

https://en.wikipedia.org/wiki/Immediately-invoked_function_expression
https://en.wikipedia.org/wiki/Immediately-invoked_function_expression

Here we've declared add to be the value of invoking the anonymous function
expression written between the first (...) parentheses. In essence, we have
created a function that gets executed immediately, and which returns another
function that we will use going forward in our program.

This is an advanced technique to be aware of at this point, but not one you
need to master right away. We'll see it used, and use it ourselves, in later
weeks to to avoid global variables, simulate block scope in JavaScript, and to
choose or generate function implementations at runtime (e.g., polyfill).

https://remysharp.com/2010/10/08/what-is-a-polyfill

Practice Exercises
For each of the following, write a function that takes the given arguments, and
returns or produces (e.g., console.log) the given result.

1. Given r (radius) of a circle, calculate the area of a circle (A = π _ r _ r).

2. Simulate rolling a dice using random() . The function should allow the caller
to specify any number of sides, but default to 6 if no side count is given:
roll() (assume 6 sided, return random number between 1 and 6) vs.
roll(50) (50 sided, return number between 1 and 50).

3. Write a function that converts values in Celcius to Farenheit: convert(0)

should return "32 F" .

4. Modify your solution to the previous function to allow a second argument:
"F" or "C" , and use that to determine what the scale of the value is,
converting to the opposite: convert(122, "F") should return "50 C" .

5. Function taking any number of arguments (Number s), returning true if
they are all less than 50: isUnder50(1, 2, 3, 5, 4, 65) should return
false .

6. Function allowing any number of arguments (Number s), returning their
sum: sum(1, 2, 3) should return 6 .

7. Function allowing any number of arguments of any type, returns true only
if none of the arguments is falsy. allExist(true, true, 1) should return
true , but allExist(1, "1", 0) should return false .

8. Function to create a JavaScript library name generator:

generateName("dog") should return "dog.js"

9. Function to check if a number is a multiple of 3 (returns true or false)

10. Check if a number is between two other numbers, being inclusive if the
final argument is true: checkBetween(66, 1, 50, true) should return
false .

11. Function to calculate the HST (13%) on a purchase amount

12. Function to subtract a discount % from a total. If no % is given, return the
original value.

13. Function that takes a number of seconds as a Number , returning a String

formatted like "X Days, Y Hours, Z Minutes" rounded to the nearest
minute.

14. Modify your solution above to only include units that make sense: "1

Minute" vs. "3 Hours, 5 Minutes" vs. "1 Day, 1 Hour, 56 Minutes" etc

15. Function that takes any number of arguments (Number s), and returns them
in reverse order, concatenated together as a String: flip(1, 2, 3) should
return "321"

16. Function that takes two Number s and returns their sum as an Integer

value (i.e., no decimal portion): intSum(1.6, 3.333333) should return 4

17. Function that returns the number of matches found for the first argument
in the remaining arguments: findMatches(66, 1, 345, 2334, 66, 67,

66) should return 2

18. Function to log all arguments larger than 255 : showOutsideByteRange(1,

5, 233, 255, 256, 0) should log 256 to the console

19. Function that takes a String and returns its value properly encoded for
use in a URL. prepareString("hello world") should return
"hello%20world"

20. Using the previous function, write an enclosing function that takes any
number of String arguments and returns them in encoded form,
concatenated together like so: "?...&...&..." where "..." are the
encoded strings. buildQueryString("hello world", "goodnight moon")

should return "?hello%20world&goodnight%20moon"

21. Function that takes a Function followed by any number of Number s, and
applies the function to all the numbers, returning the total:
applyFn(function(x) { return x * x;}, 1, 2, 3) should return 14.

After you try writing these yourself, take a look at a possible solution

https://patrick-crawford.github.io/WebProgrammingPrinciples/assets/files/practice-exercises-solutions-a73b4ce7aaedd616d8952f3a76b8118e.js

Introduction
In languages like C, we are used to thinking about data types separately from
the functions that operate upon them. We declare variables to hold data in
memory, and call functions passing them variables as arguments to operate on
their values.

In object-oriented languages like JavaScript, we are able to combine data and
functionality into higher order types, which both contain data and allow us to
work with that data. In other words, we can pass data around in a program,
and all the functionality that works on that data travels with it.

Let's consider this idea by looking at strings in C vs. JavaScript. In C a string is
a null terminated (\0) array of char elements, for example:

With C-style strings, we perform operations using standard library functions,
for example string.h :

const char name1[31] = "My name is Arnold";

const char name2[31] = {'M','y',' ','n','a','m','e',' ','i','s','

','A','r','n','o','l','d','\0'};

#include <string.h>

int main(void)

{

char str[31]; // declare a string

...

strlen(str); // find the length of a string str

strcpy(str2, str); // copy a string

strcmp(str2, str); // compare two strings

JavaScript also allows us to work with strings, but because JavaScript is an
object-oriented language, a JavaScript String is an Object with various
properties and methods we can use for working with text.

One way to think about Object s like String is to imagine combining a C-
string's data type with the functions that operate on that data. Instead of
needing to specify which string we want to work with, all functions would
operate a particular instance of a string. Another way to look at this would be
to imagine that the data and the functions for working with that data are
combined into one more powerful type. If we could do this in C, we would be
able to write code that looked more like this:

In the made-up code above, the data (str) is attached to functionality that we
can call via the .* notation. Using str.* , we no longer need to indicate to the
functions which string to work with: all string functions work on the string data
to which they are attached.

This is very much how String and other Object types work in JavaScript. By
combining the string character data and functionality into one type (i.e., a
String), we can easily create and work with text in our programs.

Also, because we work with strings at a higher level of abstraction (i.e., not as
arrays of char), JavaScript deals with memory management for us, allowing
our strings to grow or shrink at runtime.

String str = "Hello"; // declare a string

int len = str.len; // get the length of str

str.cmp(str2); // compare str and str2

str = str.cat("..."); // concatenate "..." onto str

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/prototype#Properties

Strings
Here are a few examples of how you can declare a String in JavaScript, first
using a string literal, followed by a call to the new operator and the String

object's constructor function:

If we want to convert other types to a String , we have a few options:

/*

* JavaScript String Literals

*/

let s = 'some text'; // single-quotes

let s1 = 'some text'; // double-quotes

let s2 = `some text`; // template literal using back-ticks

let unicode =

'⯑⯑ español Deutsch English ⯑⯑⯑⯑⯑⯑⯑⯑ العربية português

⯑⯑⯑⯑⯑ русский ⯑⯑⯑ ⯑⯑⯑⯑⯑⯑ ⯑⯑⯑ ⯑⯑⯑⯑⯑ ;'עברית // non-ASCII

characters

/*

* JavaScript String Constructor: `new String()` creates a new

instance of a String

*/

let s3 = new String('Some Text');

let s4 = new String('Some Text');

let x = 17;

let s = '' + x; // concatenate with a string (the empty string)

let s2 = String(x); // convert to String. Note: the `new` operator

is not used here

let s3 = x.toString(); // use a type's .toString() method

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/new
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/new

Whether you use a literal or the constructor function, in all cases you will be
able to use the various functionality of the String type.

String Properties and Methods
• s.length - will tell us the length of the string (UTF-16 code units)
• s.charAt(1) - returns the character at the given position (UTF-16 code

unit). We can also use s[1] and use an index notation to get a particular
character from the string.

• s.concat() - returns a new string created by concatenating the original
with the given arguments.

• s.padStart(2, '0) - returns a new string padded with the given substring
until the length meets the minimum length given. See also s.padEnd() .

• s.includes("tex") - returns true if the search string is found within the
string, otherwise false if not found.

• s.startsWith("some") - returns true if the string starts with the given
substring, otherwise false .

• s.endsWith("text") - returns true if the string ends with the given
substring, otherwise false .

• s.indexOf("t") - returns the first index position of the given substring
within s , or -1 if the substring is not found within s . See also
s.lastIndexOf()

• s.match(regex) - tries to match a regular expression against the string,
returning the matches. See discussion of RegExp below.

• s.replace(regex, "replacement") - returns a new string with the first
occurrence of a matched RegExp replaced by the replacement text. See
also s.replaceAll() , which replaces all occurrences.

• s.slice(2, 3) - returns a new string extracted (sliced) from within the

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/prototype#Properties
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/length
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/length
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/charAt
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/charAt
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/concat
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/concat
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/padStart
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/padStart
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/padEnd
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/padEnd
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/includes
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/includes
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/startsWith
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/startsWith
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/endsWith
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/endsWith
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/indexOf
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/indexOf
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/lastIndexOf
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/lastIndexOf
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/match
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/match
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/replace
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/replace
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/replaceAll
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/replaceAll
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/slice
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/slice

original string. A beginning index and (optional) end index mark the
position of the slice.

• s.split() - returns an Array (see discussion below) of substrings by
splitting the original string based on the given separator (String or
RegExp).

• s.toLowerCase() - returns a new string with all characters converted to
lower case.

• s.toUpperCase() - returns a new string with all characters converted to
upper case.

• s.trim() - returns a new string with leading and trailing whitespace
removed.

JavaScript Version Note: modern JavaScript also supports template literals,
also sometimes called template strings. Template literals use back-ticks
instead of single- or double-quotes, and allow you to interpolate JavaScript
expressions. For example:

let a = 1;

let s = 'The value is ' + 1 * 6;

// Use ${...} to interpolate the value of an expression into a

string

let templateVersion = `The value is ${1 * 6}`;

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/split
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/split
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/toLowerCase
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/toLowerCase
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/toUpperCase
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/toUpperCase
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/trim
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/trim
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals

Arrays
An Array is an Object with various properties and methods we can use for
working with lists in JavaScript.

Declaring JavaScript Arrays
Like creating a String , we can create an Array in JavaScript using either a
literal or the Array constructor function:

Like arrays in C, a JavaScript Array has a length, and items contained within it
can be accessed via an index:

Unlike languages such as C, a JavaScript Array can contain any type of data,
including mixed types:

JavaScript Array s can also contain holes (i.e., be missing certain elements),
change size dynamically at runtime, and we don't need to specify an initial
size:

let arr = new Array(1, 2, 3); // array constructor

let arr2 = [1, 2, 3]; // array literal

let arr = [1, 2, 3];

let len = arr.length; // len is 3

let item0 = arr[0]; // item0 is 1

let list = [0, '1', 'two', true];

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array#Array_instances

NOTE: a JavaScript Array is really a map, which is a data structure that
associates values with unique keys (often called a key-value pair).
JavaScript arrays are a special kind of map that uses numbers for the keys,
which makes them look and behave very much like arrays in other
languages. We will encounter this map structure again when we look at
how to create Object s.

Accessing Elements in an Array
Like arrays in C, we can use index notation to obtain an element at a given
index:

JavaScript also allows us to use a technique called Destructuring Assignment to
unpack values in an Array (or Object, see below) into distinct variables.
Consider each of the following methods, both of which accomplish the same
goal:

let arr = []; // empty array

arr[5] = 56; // element 5 now contains 56, and arr's length is now

6

let numbers = [50, 12, 135];

let firstNumber = numbers[0];

let lastNumber = numbers[numbers.length - 1];

// Co-ordinates for Seneca's Newnham Campus

let position = [43.796, -79.3486];

// Separate the two values into their own unique variables.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment

This technique is useful when working with structured data, where you know
exactly how many elements are in an array, and need to access them:

Here we .split() the string '17/02/2001' at the '/' character, which will
produce the Array ['17', '02', '2001'] . Next, we destructure this Array's
values into the variables day , month , year .

You can also ignore values (i.e., only unpack the one or ones you want):

Array Properties and Methods
• arr.length - a property that tells us the number of elements in the array.

let dateString = `17/02/2001`;

let [day, month, year] = dateString.split('/');

console.log(`The day is ${day}, month is ${month}, and year is

${year}`);

let dateString = `17/02/2001`;

// Ignore the first index in the array, unpack only position 1 and

2

let [, month, year] = dateString.split('/');

console.log(`The month is ${month}, and year is ${year}`);

let emailAddress = `jsmith@myseneca.ca`;

// Only unpack the first position, ignoring the second

let [username] = emailAddress.split('@');

console.log(`The username for ${emailAddress} is ${username}`);

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/length
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/length

Methods that modify the original array
• arr.push(element) - a method to add one (or more) element(s) to the end

of the array. Using push() modifies the array (increasing its size). You can
also use arr.unshift(element) to add one (or more) element to the start
of the array.

• arr.pop() - a method to remove the last element in the array and return
it. Using pop() modifies the array (reducing its size). You can also use
arr.shift() to remove the first element in the array and return it.

Methods that do not modify the original array
• arr.concat([4, 5], 6) - returns a new array with the original array joined

together with other arrays or values provided.
• arr.includes(element) - returns true if the array includes the given

element, otherwise false .
• arr.indexOf(element) - returns the index of the given element in the

array, if it exists, otherwise -1 (meaning not found).
• arr.join("\n") - returns a string created by joining (concatenating) all

elements in the array with the given delimiter (String).

Methods for iterating across the elements in
an Array
JavaScript's Array type also provides a long list of useful methods for working
with list data. All of these methods work in roughly the same way:

// Define an Array

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/push
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/push
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/unshift
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/unshift
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/pop
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/pop
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/shift
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/shift
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/concat
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/concat
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/includes
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/includes
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/indexOf
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/indexOf
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/join
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/join
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array

JavaScript will call the given function on every element in the array, one after
the other. Using these methods, we are able to work with the elements in an
Array instead of only being able to do things with the Array itself.

As a simple example, let's copy our list Array and add 3 to every element.
We'll do it once with a for-loop, and the second time with the forEach()

method:

Now the same code using the Array 's forEach() method:

We've been able to get rid of all the indexing code, and with it, the chance for
off-by-one errors. We also don't have to write code to get the element out of
the list: we just use the variable passed to our function.

These Array methods are so powerful that there are often functions that do
exactly what we need. For example, we could shorten our code above even
further but using the map() method. The map() method takes one Array , and

// Create a new Array that adds 3 to every item in list, using a

for-loop

let listCopy = [];

for (let i = 0; i < list.length; i++) {

let element = list[i];

element += 3;

listCopy.push(element);

}

let listCopy = [];

list.forEach(function (element) {

listCopy.push(element + 3);

});

https://en.wikipedia.org/wiki/Off-by-one_error

calls a function on every element, creating and returning a new Array with
those elements:

Here are some of the Array methods you should work on learning:

• arr.forEach() - calls the provided function on each element in the array.
• arr.map() - creates and returns a new array constructed by calling the

provided function on each element of the original array.
• arr.find() - finds and returns an element from the array which matches a

condition you define. See also arr.findLast() , arr.findIndex() , and
arr.findLastIndex() , which all work in similar ways.

• arr.filter() - creates and returns a new array containing only those
elements that match a condition you define in your function.

• arr.every() - returns true if all of the elements in the array meet a
condition you define in your function.

There are more Array methods you can learn as you progress with JavaScript,
but these will get you started.

Iterating over String, Array, and
other collections
The most familiar way to iterate over a String or Array works as you'd
expect:

let listCopy = list.map(function (element) {

return element + 3;

});

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/forEach
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/forEach
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/find
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/find
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/findLast
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/findLast
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/findIndex
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/findIndex
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/findLastIndex
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/findLastIndex
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/every
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/every
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array#Array_instances
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array#Array_instances

The standard for loop works, but is not the best we can do. Using a for loop
is prone to various types of errors: off-by-one errors, for example. It also
requires extra code to convert an index counter into an element.

An alternative approach is available in ES6, for...of :

let s = 'Hello World!';

for (let i = 0; i < s.length; i++) {

let char = s.charAt(i);

console.log(i, char);

// Prints:

// 0, H

// 1, e

// 2, l

// ...

}

let arr = [10, 20, 30, 40];

for (let i = 0; i < arr.length; i++) {

let elem = arr[i];

console.log(i, elem);

// Prints:

// 0, 10

// 1, 20

// 2, 30

// ...

}

let s = 'Hello World!';

for (let char of s) {

console.log(char);

// Prints:

// H

// e

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/for...of
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/for...of

Using for...of we eliminate the need for a loop counter altogether, which has
the added benefit that we'll never under- or over- shoot our collection's
element list; we'll always loop across exactly the right number of elements
within the given collection.

The for...of loop works with all collection types, from String to Array to
arguments to NodeList (as well as newer collection types like Map , Set , etc.).

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Set
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Set

RegExp
A regular expression is a special string that describes a pattern to be used for
matching or searching within other strings. They are also known as a regex or
regexp, and in JavaScript we refer to RegExp when we mean the built-in
Object type for creating and working with regular expressions.

You can think of regular expressions as a kind of mini programming language
separate from JavaScript. They are not unique to JavaScript, and learning how
to write and use them will be helpful in many other programming languages.

Even if you're not familiar with regular expression syntax (it takes some time to
master), you've probably encountered similar ideas with wildcards. Consider
the following Unix command:

Here we ask for a listing of all files whose filename ends with the extension
.txt . The * has a special meaning: any character, and any number of
characters. Both a.txt and file123.txt would be matched against this
pattern, since both end with .txt .

Regular expressions take the idea of defining patterns using characters like * ,
and extend it into a more powerful pattern matching language. Here's an
example of a regular expression that could be used to match both common
spellings of the word "colour" and "color" :

ls *.txt

colou?r

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions

The ? means that the preceding character u is optional (it may or may not be
there). Here's another example regular expression that could be used to match
a string that starts with id- followed by 1, 2, or 3 digits (id-1 , id-12 , or
id-999):

The \d means a digit (0-9) and the {1,3} portion means at least one, and at
most three. Together we get at least one digit, and at most three digits.

There are many special characters to learn with regular expressions, which
we'll slowly introduce.

Declaring JavaScript RegExp

Like String or Array , we can declare a RegExp using either a literal or the
RegExp constructor:

Regular expressions can also have advanced search flags, which indicate how
the search is supposed to be performed. These flags include g (globally match
all occurrences vs. only matching once), i (ignore case when matching), and
m (match across line breaks, multi-line matching) among others.

id-\d{1,3}

let regex = /colou?r/; // regex literal uses /.../

let regex2 = new RegExp('colou?r');

let regex = /pattern/gi; // find all matches (global) and ignore

case

let regex2 = new RegExp('pattern', 'gi'); // same thing using the

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions#Using_special_characters
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions#Advanced_searching_with_flags_2

Understanding Regular Expression
Patterns
Regular expressions are dense, and often easier to write than to read. It's
helpful to use various tools to help you as you experiment with patterns, and
try to understand and debug your own regular expressions:

• regexr.com
• Regulex
• regexpal.com

Matching Specific Characters
• \ ^ $. * + ? () [] { } | all have special meaning, and if you need

to match them, you have to escape them with a leading \ . For example:
\$ to match a $.

• Any other character will match itself. abc is a valid regular expression and
means match the letters abc.

• The . means any character. For example a. would match ab , a3 , or a" .
If you need to match the . itself, make sure you escape it: .\. means a
period followed by any character

• We specify a set of possible characters using [] . For example, if we
wanted to match any vowel, we might do [aeiou] . This says match any of
the letters a, e, i, o, or u and would match a but not t . We can also do the
opposite, and define a negated set: [^aeiou] would match anything that
is not a vowel. With regular expressions, it can often be easier to define

https://regexr.com/
https://jex.im/regulex
https://www.regexpal.com/

your patterns in terms of what they are not instead of what they are, since
so many things are valid vs. a limited set of things that are not. We can
also specify a range, [a-d] would match any of a, b, c, d but not f, g

or h .

• Some sets are so common that we have shorthand notation. Consider the
set of single digit numbers, [0123456789] . We can instead use \d which
means the same thing. The inverse is \D (capital D), and means
[^0123456789] (i.e., not one of the digits). If we wanted to match a
number with three digits, we could use \d\d\d , which would match 123 or
678 or 000 .

• Another commonly needed pattern is any letter or number and is available
with \w , meaning [A-Za-z0-9_] (all upper- and lower-case letters, digits 0
to 9, and the underscore). The inverse is available as \W and means [^A-

Za-z0-9_] (everything not in the set of letters, numbers and underscore).

• Often we need to match blank whitespace (spaces, tabs, newlines, etc.).
We can do that with \s , and the inverse \S (anything not a whitespace).
For example, suppose we wanted to allow users to enter an id number with
or without a space: \d\d\d\s?\d\d\d would match both 123456 and 123

456 .

• There are lots of other examples of pre-defined common patterns, such as
\n (newline), \r (carriage return), \t (tab). Consult the MDN
documentation for character classes to lookup others.

Define Character Matching Repetition
In addition to matching a single character or character class, we can also
match sequences of them, and define how many times a pattern or match can/

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/RegExp#Special_characters_meaning_in_regular_expressions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/RegExp#Special_characters_meaning_in_regular_expressions

must occur. We do this by adding extra information after our match pattern.

• ? is used to indicate that we want to match something once or none. For
example, if we want to match the word dog without an s , but also to allow
dogs (with an s), we can do dogs? . The ? follows the pattern (i.e., s)
that it modifies, and indicates that it is optional.

• * is used when we want to match zero or more of something. number \d*

would match "number " (no digits), "number 1" (one digit), and "number

1234534123451334466600" .

• + is similar to * but means one or more. vroo+m would match "vroom"

but also "vroooooooom" and "vroooooooooooooooooooooooooooooooom"

• We can limit the number of matches to an exact number using {n} , which
means match exactly n times. vroo{3}m would only match "vroooom" .
We can further specify that we want a match to happen match n or more
times using {n,} , or use {n,m} to indicate we want to match *at least n

times and no more than m times: \w{8,16} would match 8 to 16 word
characters, "ABCD1234" or "zA5YncUI24T_3GHO"

Define Positional Match Parameters or
Alternatives
Normally the patterns we define are used to look anywhere within a string.
However, sometimes it's important to specify where in the string a match is
located. For example, we might care that an id number begins with some
sequence of letters, or that a name doesn't end with some set of characters.

• ^ means start looking for the match at the beginning of the input string.
We could test to see that a string begins with a capital letter like so: ^[A-

Z] .

• Similarly $ means make sure that the match ends the string. If we wanted
to test that string was a filename that ended with a period and a three
letter extension, we could use: \.\w{3}$ (an escaped period, followed by
exactly 3 word characters, followed by the end of the string). This would
match "filename.txt" but not "filename.txt is a path" .

• Sometimes we need to specify one of a number of possible alternatives.
We do this with | , as in red|green|blue which would match any of the
strings "red" , "green" , or "blue" .

Using RegExp with Strings
So far we've discussed how to declare a RegExp , and also some of the basics
of defining search patterns. Now we need to look at the different ways to use
our regular expression objects to perform matches.

• RegExp.test(string) - used to test whether or not the given string
matches the pattern described by the regular expression. If a match is
made, returns true , otherwise false . /id-\d\d\d/.test('id-123')

returns true , /id-\d\d\d/.test('id-13b') returns false .

• String.match(regexp) - used to find all matches of the given RegExp in
the source String . These matches are returned as an Array of String s.
For example, 'This sentence has 2 numbers in it, including the

number 567'.match(/\d+/g) will return the Array ['2', '567'] (notice
the use of the g flag to find all matches globally).

• String.replace(regexp, replacement) - used to find all matches for the
given RegExp , and returns a new String with those matches replaced by
the replacement String provided. For example, '50 ,

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/RegExp/test
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/RegExp/test
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/match
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/match
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/replace
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/replace

60,75.'.replace(/\s*,\s*/g, ', ') would return '50, 60, 75.' with all
whitespace normalized around the commas.

• String.split(RegExp) - used to break the given String into an Array of
sub-strings, dividing them on the RegExp pattern. For example, 'one-

two--three---four----five-----six'.split(/-+/) would return ['one',

'two', 'three', 'four', 'five', 'six'] , with elements split on any
number of dashes.

There are other methods you can call, and more advanced ways to extract
data using RegExp, and you are encouraged to dig deeper into these concepts
over time. Thinking about matching in terms of regular expressions takes
practice, and often involves inverting your logic to narrow a set of possibilities
into something you can define in code.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/split
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/split
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions#Working_with_regular_expressions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions#Using_parentheses
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions#Using_parentheses

Practice Exercises
1. Write a function log that takes an Array of String s and displays them on

the console .

2. An application uses an Array as a Stack (LIFO) to keep track of items in a
user's shopping history. Every time they browse to an item, you want to
addItemToHistory(item) . How would you implement this?

3. Write a function buildArray that takes two Number s, and returns an
Array filled with all numbers between the given number: buildArray(5,

10) should return [5, 6, 7, 8, 9, 10]

4. Write a function addDollars that takes an Array of Number s and uses the
array's map() method to create and return a new Array with each
element having a $ added to the front: addDollars([1, 2, 3, 4]) should
return ['$1', '$2', '$3', '$4']

5. Write a function tidy that takes an Array of String s and uses the array's
map() method to create and return a new Array with each element
having all leading/trailing whitespace removed: tidy([' hello', ' world

']) should return ['hello', 'world'] .

6. Write a function measure which takes an Array of String s and uses the
array's forEach() method to determine the size of each string in the
array, returning the total: measure(['a', 'bc']) should return 3 . Bonus:
try to rewrite your code using the Array 's reduce() method.

7. Write a function whereIsWaldo that takes an Array of String s and uses
the array's forEach() method to create a new Array with only the
elements that contain the text "waldo" or "Waldo " somewhere in them:

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/Reduce
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/Reduce

whereIsWaldo(['Jim Waldorf, 'Lynn Waldon', 'Frank Smith']) should
return 'Jim Waldorf, 'Lynn Waldon'] . Bonus: try to rewrite your code
using the Array 's filter() method.

8. Write a function checkAges that takes two arguments: an Array of ages
(Number); and a cut-off age (Number). Your function should return true if
all of the ages in the Array are at least as old as the cut-off age:
checkAges([16, 18, 22, 32, 56], 19) should return false and
checkAges([16, 18, 22, 32, 56], 6) should return true . Bonus: try to
rewrite your code using the Array 's every() method.

9. Write a function containsBadWord that takes two arguments: badWords

(an Array of words that can't be used), and userName (a String entered
by the user). Check to see if any of the words in badWords are contained
within userName . Return the badWord that was found, or null if none are
found.

10. A String contains a Key/Value pair separated by a ":" . Using String

methods, how would you extract the two parts? Make sure you also deal
with any extra spaces. For example, all of the following should be
considered the same: "colour: blue" , "colour:blue" , "colour : blue" ,
"colour: blue " . Bonus: how could you use a RegExp instead?

11. A String named addresses contains a list of street addresses. Some of
the addresses use short forms: "St." instead of "Street" and "Rd"

instead of "Road" . Using String methods, convert all these short forms to
their full versions.

12. Room booking codes must take the following form: room number (1-305)
followed by - followed by the month as a number (1-12) followed by the
day as a number (1-31). For example, all of the following are valid:

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/every
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/every

"1-1-1" , "250-10-3" , "66-12-12" . Write a RegExp to check whether a
room booking code is valid or not, which allows any of the valid forms.

13. Write a function that takes a String and checks whether or not it begins
with one of "Mr." , "Mrs." , or "Ms." . Return true if it does, otherwise
false . Bonus: try writing your solution using regular String methods and
again as a RegExp .

14. Write a function that takes a password String , and validates it according
to the following rules: must be between 8-32 characters in length; must
contain one Capital Letter; must contain one Number; must contain one
Symbol (!@#$%^&*-+{}). Return true if the given password is valid,
otherwise false .

15. Write a RegExp for a Canadian Postal Code, for example "M3J 3M6" . Allow
spaces or no spaces, capitals or lower case.

A Larger Problem Combining
Everything:
You are asked to write JavaScript code to process a String which is in the form
of a Comma-Separated Values (CSV) formatted data dump of user information.
The data might look something like this:

Write a series of functions to accomplish the following, building a larger
program as you go. You can begin with exercise.js:

0134134,John Smith,555-567-2341,62 inches

0134135 , June Lee , 5554126347 , 149 cm

0134136, Kim Thomas , 5324126347, 138cm`

https://patrick-crawford.github.io/WebProgrammingPrinciples/assets/files/exercise-5bb4abd92035ef72375208113096357b.js
https://en.wikipedia.org/wiki/Comma-separated_values
https://patrick-crawford.github.io/WebProgrammingPrinciples/assets/files/exercise-5bb4abd92035ef72375208113096357b.js

1. Split the string into an Array of separate rows (i.e., an Array with rows
separated by \n). Bonus: how could we deal with data that includes both
Unix (\n) and Windows (\r\n) line endings?

2. Each row contains information user info: ID , Name , Phone Number , and
Height info all separated by commas. Split each row into an Array with all
of its different fields. You need to deal with extra and/or no whitespace
between the commas.

3. Get rid of any extra spaces around the Name field

4. Using a RegExp , extract the Area Code from the Phone Number field. All
Phone Number s are in one of two formats: "555-555-5555" or
"5555555555" .

5. Check if the Height field has "cm" at the end. If it does, strip that out,
convert the number to inches, and turn it into a String in the form "xx

inches" . For example: "152 cm" should become "59 inches" .

6. After doing all of the above steps, create a new record with ID , Name , Area

Code , Height In Inches and separate them with commas

7. Combine all these processed records into a new CSV formatted string, with
rows separated by \n .

A sample solution is provided in solution.js.

https://patrick-crawford.github.io/WebProgrammingPrinciples/assets/files/solution-a94c91d422ed288aec2621cc1f74bace.js

Objects in JavaScript
So far we've been working with built-in Objects in JavaScript. We can also
create our own in order to model complex data types in our programs. There
are a number of ways to do this, and we'll look at a few of them now.

An Object in JavaScript is a map (also known as an associative array or a
dictionary), which is a data structure composed of a collection of key and value
pairs. We call an Object 's key/value pairs properties. Imagine a JavaScript
Object as a dynamic "bag" of properties, a property-bag. Each key is a unique
String , and an Object can only contain a given key once. An Object can
have any number of properties, and they can be added and removed at
runtime.

Much like we did with an Array or RegExp , we can create instances of
Objects via literals. An Object literal always starts with { and ends with } .
In between these curly braces we can optionally include a list of any properties
(comma separated) we want to attach to this Object instance. These
properties are written using a standard key: value style, with the property's
name String coming first, followed by a : , then its value. The value can be
any JavaScript value, including functions or other Objects .

Here are a few examples:

// an empty Object, with no properties

let o = {};

// a `person` Object, with one property, `name`

let person = { name: 'Tim Wu' };

// a `campus` Object, with `name` as well as co-ordinates (`lat`,

Accessing Elements in an Object
Object property names are String s, and we can refer to them either via the
dot operator .name , or using the bracket operator ['name'] (similar to
indexing in an Array):

Why would you choose the dot operator over the bracket operator, or vice
versa? The dot operator is probably more commonly used; however, the
bracket operator is useful in a number of scenarios. First, if you need to
use a reserved JavaScript keyword for your property key, you'll need to
refer to it as a string (e.g., obj['for']). Second, it's sometimes useful to
be able to pass a variable in order to lookup a property value for a name
that will be different at runtime. For example, if you are using usernames
as keys, you might do users[currentUsername] , where currentUsername

is a variable holding a String for the logged in user.

Destructuring Objects
In the same way that we destructured Array values into new variables, we can
also use the same technique with an Object . Recall that JavaScript allows us
to Destructuring Assignment to unpack values in an Array or Object into
distinct variables. Consider each of the following methods, both of which

let person = { name: 'Tim Wu' };

// get the value of the `name` property using the . operator

console.log(person.name);

// get the value of the `name` property using the [] operator

console.log(person['name']);

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment

accomplish the same goal:

With an Array , we learned that you can destructure various elements into new
variables:

The same can be done with an Object . Imagine a complex Object , with lots
of properties, but we're only interested in a few of them:

This is a powerful technique for extracting data from an Object .

Modifying Object Properties
Object literals allow us to define an initial set of properties on an Object , but
we aren't limited to that set. We can easily add new ones:

// Co-ordinates for Seneca's Newnham Campus

let position = [43.796, -79.3486];

let [lat, lng] = position;

let senecaNewnham = {

address: '1750 Finch Ave. East',

city: 'Toronto',

province: 'Ontario',

postalCode: 'M2J 2X5',

phoneNumber: '416.491.5050',

lat: 43.796,

lng: -79.3486,

};

// Destructure only the `lat` and `lng` properties

let { lat, lng } = senecaNewnham;

Here we define an empty Object , but then add new properties. Because we
can add properties after an Object is created, we always have to deal with a
property not existing. If we try to access a property that does not exist on an
Object , there won't be an error. Instead, we will get back undefined for its
value:

Because properties may or may not exist at runtime, it's important to always
check for a value before trying to use it. We could rewrite the above to first
check if data has an inventory property:

Another common situation where you have to deal with this is working with
deep structures. Consider an Object that defines the structure of a level in a
video game. The level includes various rooms , some of which contain a

let data = {};

data.score = 17;

data.level = 3;

data.health = '***';

let currentScore = data.score; // `score` exists on `data`, and we

get back the value `17`

let inventory = data.inventory; // `inventory` does not exist on

`data`, so we get back `undefined`

if (data.inventory) {

// `data` has a value for `inventory`, use data.inventory

here...

} else {

// there is no `inventory` on `data`, do something else...

}

monster :

When working this code, we can access a particular room by its ID :

However, we used an ID that doesn't exist, we'd get back undefined :

let gameLevel = {

name: 'Level 1',

rooms: {

// Each room has a unique ID

R31343: {

name: 'Front Hallway',

},

R31344: {

name: 'Kitchen',

monster: {

name: 'Bear',

strength: 15,

},

},

R31345: {

name: 'Back Hallway',

},

R31346: {

name: 'Sitting Room',

monster: {

name: 'Dog',

strength: 8,

},

},

},

};

// Get a reference to the Kitchen

let room = gameLevel.rooms.R31344;

If we then try to access the monster in that room, our program will crash:

JavaScript provides a few ways to deal with this problem. Consider:

In the third version above we've used optional chaining via the ?. operator.
This stops us from going any further in an object chain, when something is
undefined.

// Get a reference to the TV Room (no such room!)

let room = gameLevel.rooms.R31347; // <-- room is `undefined`

let room = gameLevel.rooms.R31347; // <-- room is `undefined`

console.log(room.monster); // <-- crash! room is `undefined` so we

can't access `monster within it

let room = gameLevel.rooms.R31347;

// Version 1

if (room) {

// only access room if it is truthy

}

// Version 2

if (room && room.monster) {

// only try to get .monster if room is truthy

}

// Version 3

if (room?.monster) {

// same as 2, but using ?. syntax

}

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Optional_chaining

Using Objects: dealing with
optional parameters
A very common pattern in JavaScript programs that uses this concept is
optional argument passing to functions. Instead of using an unknown number
of arguments for a function, we often use an options Object , which may
contain values to be used in the function. Consider the case of starting a game
and sometimes passing existing user data:

// Make sure `options` exists, and use an empty `Object` instead

if it's missing.

// If we don't do this, we'll get an error if we try to do

`options.score`, since

// we can't lookup the `score` property on `undefined`.

function initGame(options = {}) {

// If the user already has a score, use that, otherwise default

to 0

let score = options.score || 0;

// If the user is already on a level, use that, otherwise

default to 1

let level = options.level || 1;

// If the user has collected an items in her inventory, use

that, otherwise an empty Array

let inventory = options.inventory || [];

// Begin the game, passing the values we have determined above

playGame(score, level, inventory);

}

// Define our options: we have a score and level, but no inventory

let options = {

score: 25,

In the code above, we have an options Object that defines some, but not all
of the properties our initGame function might use. We wrote initGame using a
single argument so that it was easier to call: we didn't need to worry about the
order or number of arguments, and could instead just define an Object with
all of the properties we had. The initGame function examined the options at
runtime to see which properties existed, and which were undefined and
needed a default value instead. Recall that we can use the logical OR (||)
operator to choose between two values at runtime.

It's also common to see people use destructuring here:

The value of what we've done above is that passing many arguments to a
function is easier when we can name them as properties on an Object instead
of having to pass them positionally as arguments.

Updating, Clearing, and Removing
properties
We've seen that properties can be defined when declared as part of a literal

function processStudent(student) {

let { name, studentId, username, email } = student;

// Use values destructured from student object

}

processStudent({

name: 'Tim Wu',

studentId: '10341346',

username: 'timw',

email: 'timw@myseneca.ca',

});

and added later via the . or [] operators. We can also update or remove
values after they are created:

An Object 's property keys are unique, and setting a value for o.name more
than once doesn't add more properties--it overwrites the value already stored
in the existing property. We can also clear (remove the value but not the key)
or delete (remove the entire property from the object, key and value) things
from an Object .

Why would you choose to assign null vs. use delete ? Often we want to

let o = {};

// Add a name property

o.name = 'Tim Wu';

// Update the name property to a new value, removing the old one.

o.name = 'Mr. Timothy Wu';

let o = {};

// Add a `height` property

o.height = '35 inches';

// Add an owner ID property

o.owner = '012341341';

// Clear the value of `height`. We leave the `height` key, but get

rid of the '35 inches' value

o.height = null;

// Completely remove the owner property from the object (both the

key and its value)

delete o.owner;

get rid of a key's value, but will use the key again in the future (e.g., add a
new value). In such cases we just null the value by assigning the key a
value of null . If we know that we'll never use this key again, and we don't
want to retain it on the Object , we can instead completely remove the
property (key and value) with delete . You'll see both used. For the most
part, setting a key's value to null is probably what you want.

Using Objects: creating sets to
track arbitrary lists
Another common use of Object s, and their unique property keys, is to keep
track of a sets, for example to count or keep track of an unknown number of
items. Consider the following program, which tracks how many times each
character appears within a String . The code uses the [] operator to allow for
the keys to be created and accessed via a variable (char). Without an Object

we would have to hard-code variables for each separate letter.

// An empty `Object`, which we'll populate with keys (letters) and

values (counts)

let characterCounts = {};

let sentence = 'The quick brown fox jumped over the lazy dog.';

let char;

let count;

// Loop through all characters in sentence

for (let char of sentence) {

// Get the current count for this character, or use 0 if we

haven't seen it before

count = characterCounts[char] || 0;

// Increase the count by 1, and store it in our object

Complex Property Types: Object,
Function

We said earlier that Object properties can be any valid JavaScript type. That
includes Number , String , Boolean , etc., also Object and Function . A
property may define a complex Object of its own:

Here we define a part , which has an id (part.id) as well as a complex
property named info , which is itself an Object . We access properties deep in
an Object the same way as a simple property, for example:
part.info.ref.length means: get the length of the ref array on the info

property of the part Object . An Object 's properties can be Object s many
levels deep, and we use the . or [] operators to access these child
properties.

An Object property can also be a function. We call these functions methods. A
method has access to other properties on the Object via the this keyword,
which refers to the current Object instance itself. Let's add a toString()

method to our part Object above:

let part = {

id: 5,

info: {

name: 'inner gasket',

shelf: 56713,

ref: [5618, 5693],

},

};

The toString property is just like any other key we've added previously,
except its value is an anonymous function. Just as we previously bound
function expressions to variables, here a function expression is bound to an
Object 's property. When we write part.toString we are accessing the
function stored at this key, and by adding the () operator, we can invoke it:
part.toString() says get the function stored at part.toString and call it. Our
function accesses other properties on the part Object by using this.*

instead of part.* . When the function is run, this will be the same as part

(i.e., a reference to this Object instance).

The this keyword in JavaScript is used in different contexts, and has a
different meaning depending on where and how it is used. We will return to
this and its various meanings throughout the course.

Suggested Readings
• Object-oriented JavaScript for beginners

let part = {

id: 5,

info: {

name: 'inner gasket',

shelf: 56713,

ref: [5618, 5693],

},

toString: function () {

return `${this.info.name} (#${this.id})`;

},

};

console.log(part.toString()); // prints "inner gasket (#5)" to the

console.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/this
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/this
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/Object-oriented_JS

• ExploringJS, Chapter 17. Objects and Inheritance
• ExploringJS, Chapter 20. Dates
• ExploringJS, Chapter 21. Math

http://exploringjs.com/es5/ch17.html
http://exploringjs.com/es5/ch20.html
http://exploringjs.com/es5/ch21.html

Constructor Functions
Sometimes we need to create lots of Objects that have the same layout. For
example, we might be defining lots of users in an application. All of our user
Objects need to work the same way so that we can pass them around within
our program, to and from functions. Every user needs to have the same set of
properties and methods, so we decide to write a factory function that can build
our user Objects for us based on some data. We call such functions a
Constructor :

Notice that unlike all previous functions we've defined, the User function
starts with a capital U instead of a lower case u . We use this naming
convention to indicate that User is special: a constructor function. A
constructor function needs to be called with the extra new keyword in front of
it. When we say new User(...) we are saying, create a new object, and pass
it along to User so it can attach various things to it.

A constructor can also add methods to an object via this :

// Define a Constructor function, `User`

function User(id, name) {

// Attach the id to an Object referenced by `this`

this.id = id;

// Attach the name to an Object referenced by `this`

this.name = name;

}

// Create a new instance of a User (Object)

let user1 = new User(1, 'Sam Smith');

// Create another new instance of a User (Object)

let user2 = new User(2, 'Joan Winston');

In the code above, we're creating a new function every time we create a new
User. As we start to create lots of users, we'll also be creating lots of duplicate
functions. This will cause our program to use more and more resources
(memory), which can lead to issues as the program scales.

Object Prototypes
What we would really like is a way to separate the parts of a User that are
different for each user (the data: id , name), but somehow share the parts that
are the same (the methods: toString). JavaScript gives us a way to
accomplish this via an Object 's prototype .

JavaScript is unique among programming languages in the way it accomplishes
sharing between Object s. All object-oriented languages provide some
mechanism for us to share or inherit things like methods in a type hierarchy.
For example, C++ and Java use classes, which can inherit from one another to
define methods on parents vs. children. JavaScript uses prototypal inheritance

// Define a Constructor function, `User`

function User(id, name) {

this.id = id;

this.name = name;

// Add a toString method

this.toString = function () {

return `${this.name} (#${this.id})`;

};

}

// Create a new instance of a User (Object)

let user1 = new User(1, 'Sam Smith');

console.log(user1.toString()); // 'Sam Smith (#1)

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Inheritance_and_the_prototype_chain

and a special property called prototype .

In JavaScript, we always talk about Object s, because every object is an
instance of Object . Notice the capital O in Object , which should give you an
indication of what it is: a constructor function. In a previous week we said that
an Array is an Object , and a RegExp is an Object . This is true because of
JavaScript's type system, where almost everything is chained to Object .

JavaScript objects always have a prototype, which is an object to which their
.prototype property refers. At runtime, when we refer to an object's property,
JavaScript first looks for that property on the object itself. If it doesn't find it,
the prototype object is visited, and the same search is done. The process
continues until the end of the prototype chain is reached at Object .

Let's rewrite our User so that the toString method is moved from each user
instance to the prototype of all user instances:

This code looks very similar to what we originally wrote. Notice that we've
moved toString out of the User function, and instead attached it to
User.prototype . By doing so, we'll only ever need a single copy of this
function: every new User() instance we create will also include a reference to
a prototype object, which contains our function. When we use

// Define a Constructor function, `User`

function User(id, name) {

this.id = id;

this.name = name;

}

User.prototype.toString = function () {

return `${this.name} (#${this.id})`;

};

user1.toString() , JavaScript will do something like this:

1. does user1 have a property called toString ? No, we didn't add one in the
constructor.

2. does user1.prototype have a property called toString ? Yes, use that.

What if we'd written user1.something() ?

1. does user1 have a property called something ? No, we didn't add one in
the constructor.

2. does user1.prototype have a property called something ? No.
3. does user1.prototype.prototype (i.e., Object) have a property called

something ? No.
4. there are no more objects in the prototype chain, throw an error

Whenever a method is used on a prototype, we still pass the current instance
so we can get access to its data. Notice in our User.prototype.toString

method, we still referred to this , which will be the instance of our user, and
give us access to the correct data (name , id).

There are times when defining a method inside a constructor makes sense
vs. putting it on the prototype. The prototype will only have access to
public properties of an object instance, meaning things you explicitly add
to this and expose to the rest of your program. Sometimes we want to
define some data, but hide it from the rest of a program, so it can't be
changed after it gets created. Consider the following example, which uses
a closure to retain access to a variable in the scope of the constructor
without exposing it:

user1.something();

// TypeError: user1.something is not a function

function User(id, name) {

this.id = id;

this.name = name;

// private variable within User function, not attached to

`this`.

// Normally this variable would go out of scope after User()

completed;

// however, we will use a closure function below to capture this

scope.

let createdAt = Date.now();

// Return the number of ms this player has been playing

this.playerAgeMS = function () {

let currentTime = Date.now();

// Access `createdAt` in the parent scope, which we retain via

this closure function.

// Calculate how many ms between createdAt and the current

time.

return currentTime - createdAt + ' ms';

};

}

let user = new User(1, 'Tom');

// We can access the total time this player has existed, but not

modify it.

console.log(user.playerAgeMS());

// displays "4183 ms"

console.log(user.playerAgeMS());

// displays "5287 ms"

JavaScript's class and Object

For a long time, JavaScript didn't have any notion of a class. Most Object-
Oriented languages are based on the idea of a class, but JavaScript only has
runtime instances (i.e., Object s) and didn't need them.

In recent years, a new syntax has been added to JavaScript to allow those
more familiar with traditional OOP style programming to define their Object s
using a new class keyword.

Let's recreate our code above as a class in JavaScript:

This code still uses the same prototype technique we learned above above, but
does so in a more familiar syntax.

We can even use other OOP features like inheritance:

class User {

id;

name;

constructor(id, name) {

this.id = id;

this.name = name;

}

toString() {

return `${this.name} (#${this.id})`;

}

}

class Student extends User {

Practice Exercise
Morse Code translator
Morse code is a system of encoding developed in the 1800s that allowed
transmission of textual messages over signal systems that only supported on/
off (1 and 0) notations.

Complete the program below as specified. Your program should be able to
translate messages like -- --- .-./-.-. --- -.. . into MORSE CODE

and vice versa. Use what you learned above about Object s, and also some of
the built-in Object s we've studied, in particular RegExp and String .

Use the following limited set of morse code to use in this exercise. You could
expand your program to handle more complex messages later if you want:

Letter Morse

A .-

B -...

C -.-.

D -..

E .

F ..-.

https://en.wikipedia.org/wiki/Morse_code
https://morsecode.scphillips.com/morse2.html

Letter Morse

G --.

H

I ..

J .---

K -.-

L .-..

M --

N -.

O ---

P .--.

Q --.-

R .-.

S ...

T -

Letter Morse

U ..-

V ...-

W .--

X -..-

Y -.--

Z --..

space /

NOTE: letters are separated by a single space (' ') within a word, and words
are separated with a / . For example, the words MORSE CODE would translate to
-- --- .-./-.-. --- -.. .

// Object to provide lookup of morse code (value) for a given

letter (key).

let alpha = {

// define the mapping here as a literal

};

// Object to provide lookup of letter (value) for a given morse

code (key).

let morse = {};

// Hint: use the [] operator to specify these special key values

rather than a literal.

You can download the code above as well as a possible solution.

https://patrick-crawford.github.io/WebProgrammingPrinciples/assets/files/example-48d9eea2c3c48c0166d95ccdf8a90e71.js
https://patrick-crawford.github.io/WebProgrammingPrinciples/assets/files/solution-5bd0bbe3fc5ea9d72dd02416bb194735.js

Running a
Development Web
Environment
Developing for the web requires at least 3 things pieces of software:

1. a proper code editor which, is aware of HTML, JavaScript, and CSS
2. a web client (i.e., browser), with developer and debugging tools
3. a web server, to serve your web pages over HTTP to a browser

Code Editor
For our code editor, we will be using Visual Studio Code, which is a free (open
source) code editor created and maintained by Microsoft. It also works on
Windows, macOS, and Linux. Make sure you have downloaded and installed it
on all the computers you will use for web development.

Web Client
For our web client we will use the many web browsers we introduced in Week
1, namely:

• Google Chrome for desktop and Android
• Microsoft Edge and Internet Explorer (IE)
• Apple Safari and Safari for iOS
• Mozilla Firefox

https://code.visualstudio.com/
https://github.com/Microsoft/vscode
https://github.com/Microsoft/vscode
https://www.google.com/chrome/
https://www.microsoft.com/en-ca/windows/microsoft-edge
https://www.apple.com/ca/safari/
https://www.mozilla.org/en-US/firefox/new/

• Opera

There are many more, and you are highly encouraged to install as many as
possible.

Web Server
We will also need a web server to host our web pages and applications.
Installing and running a web server can be complicated. Industry-grade web
servers like Apache and nginx are free and can be installed and run on your
local computer; however, they are much more complicated and powerful than
anything we will need for hosting our initial web pages.

For our purposes, we will use one of the many simple node.js based HTTP
servers. In order to use them, do the following:

1. Make sure you have installed node.js on your computer.
2. In a terminal window, navigate to the directory that you want your web

server to host. For example cd my-website

3. Now download and run a web server using the npx command.

For example, you can use the serve web server like this:

cd my-website

npx serve

Need to install the following packages:

serve@14.2.1

Ok to proceed? (y)

┌──┐

│ │

│ Serving! │

https://www.opera.com/
http://httpd.apache.org/
https://www.nginx.com/
https://nodejs.org/en/
https://docs.npmjs.com/cli/v7/commands/npx
https://github.com/vercel/serve

You can now open your web browser to http://localhost:3000 and browser
your files. This uses the http protocol, and connects you to the special IP
address 127.0.0.1 , also known as localhost (i.e., you can also use
http://localhost:3000). The localhost IP address always refers to this
computer, and allows you to connect network clients to your own machine. The
final :3000 portion of the URL is a port number. Together,
http://127.0.0.1:3000 means connect using HTTP to my local computer on
port 3000.

NOTE: the second External IP address will be different than the above, but
127.0.0.1 will always be correct.

When you are done testing your web site, stop the web server by pressing
CTRL-C in your terminal window. To run the server again, use npx serve .

Suggested Readings
• HTML: HyperText Markup Language on MDN
• HTML Basics
• Learning HTML: Guides and Tutorials
• HTML Reference

https://en.wikipedia.org/wiki/Localhost
https://developer.mozilla.org/en-US/docs/Web/HTML
https://developer.mozilla.org/en-US/docs/Learn/Getting_started_with_the_web/HTML_basics
https://developer.mozilla.org/en-US/docs/Learn/HTML
https://developer.mozilla.org/en-US/docs/Web/HTML/Reference

HTML
HTML is the HyperText Markup Language. It allows us to write content in a
document, just as we would in a file created by a word processor. Unlike a
regular text file, it also includes structural and layout information about this
content. We literally mark up the text of our document with extra information.

When talking about HTML's markup, we'll often refer to the following terms:

• content: any text content you want to include can usually be written as-is.
• tag: separated from regular content, tags are special text (names) wrapped

in < and > characters, for example the paragraph tab <p> or the image
tag .

• element: everything from the beginning of an opening tag to the closing
tag, for example: <h1>Chapter 1</h1> . Here an element is made up of an
<h1> tag (i.e., opening Heading 1 tag), the text content Chapter 1 , and a
closing </h1> tag. These three components taken together create an h1

element in the document.
• attribute: optional characteristics of an element defined using the style

name or name="value" , for example <p id="error-message"

hidden>There was an error downloading the file</p> . Here two
attributes are included with the p element: an id with value "error-

message" (in quotes), and the hidden attribute (note: not all attributes
need to have a value). Full list of common attributes.

• entity: special text that should not be confused for HTML markup. Entities
begin with & and end with ; . For example, if you need to use the <

character in your document, you need to use < instead, since < would
be interpreted as part of an HTML tag. is a single whitespace and
& is the & symbol. Full list of named entities.

https://en.wikipedia.org/wiki/HTML
https://developer.mozilla.org/en-US/docs/Glossary/Tag
https://developer.mozilla.org/en-US/docs/Glossary/Element
https://developer.mozilla.org/en-US/docs/Glossary/Attribute
https://developer.mozilla.org/en-US/docs/Web/HTML/Attributes
https://developer.mozilla.org/en-US/docs/Glossary/Entity
https://dev.w3.org/html5/html-author/charref

HTML Document
The first HTML page ever created was built by Tim Berners-Lee on August 6,
1991.

Since then, the web has gone through many versions:

• HTML - created in 1990 and standardized in 1997 as HTML 4
• xHTML - a rewrite of HTML using XML in 2000
• HTML5 - the current standard.

Basic HTML5 Document
Here's a basic HTML5 web page:

Let's break this down and look at what's happening.

1. <!doctype html> tells the browser what kind of document this is (HTML5),

<!DOCTYPE html>

<html>

<head>

<meta charset="utf-8" />

<title>My Web Page</title>

</head>

<body>

<!-- This is a comment -->

<h1>Hello World!</h1>

</body>

</html>

http://info.cern.ch/hypertext/WWW/TheProject.html
https://en.wikipedia.org/wiki/Tim_Berners-Lee
https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/HTML5
https://developer.mozilla.org/en-US/docs/Glossary/Doctype
https://developer.mozilla.org/en-US/docs/Glossary/Doctype

and how to interpret/render it
2. <html> the root element of our document: all other elements will be

included within <html>...</html> .
3. <head> provides various information about the document as opposed to

providing its content. This is metadata that describes the document to
search engines, web browsers, and other tools.

4. <meta> an example of metadata, in this case defining the character set
used in the document: utf-8

5. <title> an example of a specific (named) metadata element: the
document's title, shown in the browser's title bar. There are a number of
specific named metadata elements like this.

6. <body> the content of the document is contained within
<body>...</body> .

7. <!-- ... --> a comment, similar to using /* ... */ in C or JavaScript
8. <h1> a heading element (there are headings 1 through 6), which is a title

or sub-title in a document.

Now let's try creating and loading this file in our browser:

1. Make a directory on your computer called my-website

2. Create a new file in my-website named index.html (the index.html

name is important, as it represents the main entry point to a directory of
HTML files and other web resources)

3. Use Visual Studio Code to open your my-website/index.html file
4. Copy the HTML we just discussed above, and paste it into your editor
5. Save your index.html file
6. In a terminal, navigate to your my-website directory
7. Start a web server by typing npx serve (you must do this from within the

my-website directory)

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/html
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/html
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/head
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/head
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/meta
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/meta
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/meta#Attributes
https://en.wikipedia.org/wiki/UTF-8
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/title
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/title
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/body
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/body
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/Heading_Elements
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/Heading_Elements

8. Open your web browser (Chrome, Firefox, etc) and enter
http://localhost:3000 in the URL bar

9. Make sure you can see a new page with Hello World! in black text.

Now let's make a change to our document:

1. Go back to your editor and change the index.html file so that instead of
Hello World! you have This is my web page.

2. Save your index.html file.
3. Go back to your browser and hit the Refresh button.
4. Make sure your web page now says This is my web page.

Every time we update anything in our web page, we have to refresh the web
page in our browser. The web server will serve the most recent version of the
file on disk when it is requested. Web browsers and servers disconnect from
one another after processing a request/response.

Common HTML Elements
There are many HTML elements you'll learn and use, but the following is a
good initial set to get you started.

You can see an example page that uses every HTML element here.

Metadata
Information about the document vs. the document's content goes in various
metadata elements:

• <link> - links from this document to external resources, such as CSS
stylesheets

https://developer.mozilla.org/en-US/docs/Web/HTML/Element
https://www.patrickweaver.net/blog/a-blog-post-with-every-html-element/
https://developer.mozilla.org/en-US/docs/Web/HTML/Element#Document_metadata
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/link
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/link

• <meta> - metadata that can't be included via other elements
• <title> - the document's title

Major Document Sections
• <html> - the document's root element, containing all other elements
• <head> - machine-readable metadata about the document
• <body> - the document's content

Content Sections
These are organizational blocks within the document, helping give structure to
the content and provide clues to browsers, screen readers, and other software
about how to present the content:

• <header> - introductory material at the top of a document
• <nav> - content related to navigation (a menu, index, links, etc)
• <main> - the main content of the document. For example, a news article's

paragraphs vs. ads, links, navigation buttons, etc.
• <h1>, <h2>, ..., <h6> - (sub) headers for different sections of content
• <footer> - end material (author, copyright, links)

Text Content
We organize content into "boxes," some of which have unique layout
characteristics.

• <div> - a generic container we use to attach CSS styles to a particular
area of content

• - an ordered list (1, 2, 3) of list items

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/meta
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/meta
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/meta
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/meta
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/html
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/html
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/head
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/head
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/body
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/body
https://developer.mozilla.org/en-US/docs/Web/HTML/Element#Content_sectioning
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/header
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/header
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/nav
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/nav
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/main
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/main
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/h1
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/h1
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/footer
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/footer
https://developer.mozilla.org/en-US/docs/Web/HTML/Element#Text_content
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/div
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/div
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/ol
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/ol

• - an unordered list (bullets) of list items
• - a list item in an or

• <p> - a paragraph
• <blockquote> - an extended quotation

Inline Text
We also use elements within larger text content to indicate that certain words
or phrases are to be shown differently:

• <a> - an "anchor" element, which will produce a hyperlink, allowing users
to click and navigate to some other document.

• <code> - formats the text as computer code vs. regular text.
• - adds emphasis to the text (often in italics)
• - another generic container, used to define CSS styles

Multimedia
In addition to text, HTML5 also defines a number of rich media elements:

• - an element used to embed images in a document.
• <audio> - an element used to embed sound in a document.
• <video> - an element used to embed video in a document
• <canvas> - a graphical area (rectangle) used to draw with either 2D or 3D

using JavaScript.

Scripting
We create dynamic web content and applications through the use of scripting:

• <script> - used to embed executable code in a document, typically

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/ul
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/ul
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/li
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/li
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/p
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/p
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/blockquote
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/blockquote
https://developer.mozilla.org/en-US/docs/Web/HTML/Element#Inline_text_semantics
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/a
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/a
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/code
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/code
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/em
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/em
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/span
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/span
https://developer.mozilla.org/en-US/docs/Web/HTML/Element#Image_and_multimedia
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/img
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/img
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/audio
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/audio
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/video
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/video
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/canvas
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/canvas
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/script
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/script

JavaScript.

Practical Examples
• Lists: ordered and unordered
• Anchors: creating hyperlinks
• Images: using img
• Text: text sections

https://patrick-crawford.github.io/WebProgrammingPrinciples/assets/files/list-example.html-c7c29f4c626b3ddded26c24f545fb495.txt
https://patrick-crawford.github.io/WebProgrammingPrinciples/assets/files/anchor-example.html-8f757449bbefd4a1908f9bda92dd1351.txt
https://patrick-crawford.github.io/WebProgrammingPrinciples/assets/files/img-example.html-779789899801b3495d941ba80b946669.txt
https://patrick-crawford.github.io/WebProgrammingPrinciples/assets/files/text-example.html-4d58b9997a215afae2123a6ab1d39dca.txt

HTML Elements
HTML Element Types: Block vs.
Inline
Visual HTML elements are categorized into one of two groups:

1. Block-level elements: create a "block" of content in a page, with an empty
line before and after them. Block elements fill the width of their parent
element. Block elements can contain other block elements, inline
elements, or text.

2. Inline elements: creates "inline" content, which is part of the containing
block. Inline elements can contain other inline elements or text.

Consider the following HTML content:

Here we have a <p> paragraph element. Because it is a block-level element,
this paragraph will fill its container (in this case the <body> element). It will
also have empty space added above and below it.

Within this block, we also encounter a number of other inline elements. First,
we have simple text. However, we also see the and elements being
used. These will affect their content, but not create a new block; rather, they
will continue to flow inline in their container (the <p> element).

<body>

<p>The cow jumped over the moon.</p>

</body>

https://developer.mozilla.org/en-US/docs/Web/HTML/Block-level_elements
https://developer.mozilla.org/en-US/docs/Web/HTML/Inline_elements

Empty Elements
Many of the elements we've seen so far begin with an opening tag, and end
with a closing tag: <body></body> . However, not all elements need to be
closed. Some elements have no content, and therefore don't need to have a
closing tag. We call these empty elements.

An example is the
 line break element. We use a
 when we want to
tell the browser to insert a newline (similar to using \n in C):

Other examples of empty elements include <hr> (for a horizontal line), <meta>

for including metadata in the <head> , and a dozen others.

Grouping Elements
Often we need to group elements in our page together. We have a number of
pre-defined element container options for how to achieve this, depending on
what kind of content we are creating, and where it is in the document.

Using this so-called semantic markup helps the browser and other tools (e.g.,
accessibility) determine important structural information about the document
(see this post for a great discussion):

• <header> - introductory material at the top of a
• <nav> - content related to navigation (a menu, index, links, etc)
• <main> - the main content of the document.

<p>Knock, Knock
Who's there?</p>

https://developer.mozilla.org/en-US/docs/Glossary/Empty_element
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/br
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/br
https://developer.mozilla.org/en-US/docs/Glossary/Empty_element
https://www.brucelawson.co.uk/2018/the-practical-value-of-semantic-html/
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/header
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/header
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/nav
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/nav
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/main
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/main

• <article> - a self-contained composition, such as a blog post, article, etc.
• <section> - a group of related elements in a document representing one

section of a whole
• <footer> - end material (author, copyright, links)

Sometimes there is no appropriate semantic container element for our content,
and we need something more generic. In such cases we have two options:

• <div> - a generic block-level container
• - a generic inline container

Tables
Sometimes our data is tabular in nature, and we need to present it in a grid. A
number of elements are used to create them:

• <table> - the root of a table in HTML
• <caption> - the optional title (or caption) of the table

<div>

<p>

This is an example of a using a div element. It also includes

this

span element.

</p>

<p>

Later we'll use a div or span like this to target content in

our page with JavaScript or CSS

styles.

</p>

<p></p>

</div>

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/article
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/article
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/section
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/section
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/footer
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/footer
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/div
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/div
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/span
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/span
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/table
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/table
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/caption
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/caption

• <thead> - row(s) at the top of the table (header row or rows)
• <tbody> - rows that form the main body of the table (the table's content

rows)
• <tfoot> - row(s) at the bottom of the table (footer row or rows)

We define rows and columns of data within the above using the following:

• <tr> - a single row in a table
• <td> - a single cell (row/column intersection) that contains table data
• <th> - a header (e.g., a title for a column)

We can use the rowspan and colspan attributes to extend table elements
beyond their usual bounds, for example: have an element span two columns
(colspan="2") or have a heading span 3 rows (rowspan="3") .

<table>

<caption>

Order Information

</caption>

<thead>

<tr>

<th>Quantity</th>

<th>Colour</th>

<th>Price (CAD)</th>

</tr>

</thead>

<tbody>

<tr>

<td>1</td>

<td>Red</td>

<td>$5.60</td>

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/thead
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/thead
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/tbody
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/tbody
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/tfoot
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/tfoot
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/tr
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/tr
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/td
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/td
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/th
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/th

Suggested Readings
• HTML Tables (MDN)
• Images in HTML (MDN)
• Video and Audio Content (MDN)
• HTML Reference

https://developer.mozilla.org/en-US/docs/Learn/HTML/Tables
https://developer.mozilla.org/en-US/docs/Learn/HTML/Multimedia_and_embedding/Images_in_HTML
https://developer.mozilla.org/en-US/docs/Learn/HTML/Multimedia_and_embedding/Video_and_audio_content
https://developer.mozilla.org/en-US/docs/Web/HTML/Reference

Multimedia
Images, Audio & Video
HTML5 has built in support for including images, videos, and audio along with text. We specify the media source we want to
use, and also how to present it to the user via different elements and attributes

HTML5 has also recently added the <picture> element , to allow for an optimal image type to be chosen from amongst a list
of several options.

We can also include sounds, music, or other audio:

Including video is very similar to audio:

<!-- External image URL, use full width of browser window -->

<img

src="https://images.unsplash.com/

photo-1502720433255-614171a1835e?ixlib=rb-0.3.5&ixid=eyJhcHBfaWQiOjEyMDd9&s=344dfca9dc8cb137a4b1c2c711752bc5"

/>

<!-- Local file cat.jpg, limit to 400 pixels wide -->

<!-- No controls, music will just auto-play in the background. Only MP3 source provided -->

<audio

src="https://ia800607.us.archive.org/15/items/music_for_programming/music_for_programming_1-datassette.mp3"

autoplay

></audio>

<!-- Audio with controls showing, multiple formats available -->

<audio controls>

<source src="song.mp3" type="audio/mp3" />

<source src="song.ogg" type="audio/ogg" />

<p>

Sorry, your browser doesn't support HTML5 audio. Here is a

link to the audio instead

</p>

.

</audio>

<!-- External Video File, MP4 file format, show controls -->

<video

src="http://commondatastorage.googleapis.com/gtv-videos-bucket/sample/BigBuckBunny.mp4"

controls

></video>

<!-- Local video file in various formats, show with controls -->

<video width="320" height="240" controls>

<source src="video.mp4" type="video/mp4" />

<source src="video.ogg" type="video/ogg" />

<source src="video.webm" type="video/webm" />

<p>Sorry, your browser doesn't support HTML5 video</p>

</video>

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/picture
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/picture

NOTE: the <audio> and <video> elements must use source URLs that point to actual audio or video files and not to a YouTube
URL or some other source that is actually an HTML page.

Including Scripts
We've spent a good portion of the course learning about JavaScript. So far, all of our code has been written in a stand-alone
form, executed in the Firefox Scratchpad, or by using node.js.

Our ultimate goal is to be able to run our JavaScript programs within web pages and applications. To do that, we need a way to
include JavaScript code in an HTML file. Obviously HTML isn't anything like JavaScript, so we can't simply type our code in the
middle of an HTML file and expect the browser to understand it.

Instead, we need an HTML element that can be used to contain (or link to) our JavaScript code. HTML provides such an element
in the form of the <script> element.

We can use <script> in one of two ways.

Inline Scripts
First, we can embed our JavaScript program directly within the content area of a <script> element:

Such <script> elements can occur anywhere in your HTML, though it is common to put them at the end of the <body> . We
can also include more than one, and each shares a common global environment, which is useful for combining scripts:

External Scripts Linked via URL
As our JavaScript programs get larger, embedding them directly within the HTML file via an inline <script> starts to become
unwieldy. For very small scripts, and debugging or experimentation, inline scripts are fine. However, HTML and JavaScript aren't
the same thing, and it's useful to separate them into their own files for a number of reasons.

<!doctype html>

<html>

<head>

<meta charset="utf-8" />

<title>Web Page with Script</title>

</head>

<body>

<script>

console.log('Hello World!');

</script>

</body>

</html>

<script>

// Define a global variable `msg` with a String

var msg = 'Hello World!';

</script>

<script>

// Access the global variable `msg`, defined in another <script>, but within the same JS environment

console.log(msg);

</script>

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/script
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/script

First, browsers can cache files to improve load times on a web site. If you embed a large JavaScript file in the HTML, it can't be
cached.

Second, your HTML becomes harder to read. Instead of looking at semantic content about the structure of your page, now you
have script mixed in too. This can make it harder to understand what you're looking at while debugging.

Third, there are lots of tools for HTML, and even more for JavaScript, that only work when fed the proper file type. For example,
we often use linters or bundling tools in JavaScript. We can't do that if our JavaScript is combined with HTML markup.

For these and other reasons, it's common to move your JavaScript programs to separate files with a .js file extension. We
then tell the browser to load and run these files as needed via our <script> tag like so:

In this case, we have no content within our <script> element, and instead include a src="script.js" attribute. Much like the
 element, a <script> can include a src URL to load at runtime. The browser will begin by loading your .html file, and
when it encounters the <script src="script.js"> element, it will begin to download script.js from the web server, and
then run the program it contains.

We can combine both of these methods, and include as many scripts as we need. The scripts we include can be:

• embedded inline in the HTML
• a relative URL to the same web server that served the HTML file
• an absolute URL to another web server somewhere else on the web

<!doctype html>

<html>

<head>

<meta charset="utf-8" />

<title>Web Page with Script</title>

</head>

<body>

<script src="script.js"></script>

</body>

</html>

<!doctype html>

<html>

<head>

<meta charset="utf-8" />

<title>Web Page with Scripts</title>

</head>

<body>

<script src="https://scripts.com/some/other/external/script/file.js"></script>

<script src="local-script.js"></script>

<script>

// Use functions and Objects defined in the previous two files

doSomethingAmazing();

</script>

</body>

</html>

Validating HTML
It's clear that learning to write proper and correct HTML is going to take practice. There are lots of elements to get used to, and
learn to use in conjunction. Also each has various attributes that have to be taken into account.

Browsers are fairly liberal in what they will accept in the way of HTML. Even if an HTML file isn't 100% perfect, a browser can
often still render something. That said, it's best if we do our best to provide valid HTML.

In order to make sure that your HTML is valid, you can use an HTML Validator. There are a few available online:

• https://html5.validator.nu/
• https://validator.w3.org/

Both allow you to enter a URL to an existing web page, or enter HTML directly in a text field. They will then attempt to parse
your HTML and report back on any errors or warnings, for example: an element missing a closing tag.

https://html5.validator.nu/
https://validator.w3.org/

Practical Examples
• Image: img with fixed width
• Table: table with multiple rows, columns
• Audio: single audio source
• Video: single video source

https://patrick-crawford.github.io/WebProgrammingPrinciples/assets/files/image-example.html-5b1dec5e55bc0d4a02cf717699c9cba2.txt
https://patrick-crawford.github.io/WebProgrammingPrinciples/assets/files/table-example.html-9d41c00bda32d3263067efd1e7515085.txt
https://patrick-crawford.github.io/WebProgrammingPrinciples/assets/files/audio-example.html-683dfb7402b70d25f7cf4d0a1d2c8c91.txt
https://patrick-crawford.github.io/WebProgrammingPrinciples/assets/files/video-example.html-8aba97319760b023256b5f5ece3a0ad8.txt

DOM Introduction
From HTML to the DOM
Web pages rely on HTML for their initial structure and content. We write web
pages using HTML, and then use web browsers to parse and render that HTML
into a living (i.e., modifiable at runtime) tree structure. Consider the following
HTML web page:

The DOM Tree is a living version of our HTML.

The browser will parse and render this into a tree of nodes, the DOM Tree:

<!DOCTYPE html>

<html>

<head>

<title>This is a Document!</title>

<meta charset="utf-8" />

</head>

<body>

<h1>Welcome!</h1>

<p>This is a paragraph with a link in

it.</p>

first item

second item

third item

</body>

</html>

https://en.wikipedia.org/wiki/Document_Object_Model

The DOM Tree is made up of DOM Nodes, which represent all aspects of our
document, from elements to attributes and comments. We'll refer to nodes and
elements interchangeably, because all elements are nodes in the tree.
However, there are also other types of nodes, for example: text nodes (the text
in a block element) and attribute nodes (key/value pairs). We don't always
show every node in our diagrams. Consider the <p> element from the example
above:

Here are the nodes that would be created:

<p>This is a paragraph with a link in

it.</p>

In this diagram, the gray, square boxes represent element nodes, while the
white, rounded boxes are text nodes.

When we load a web page in a web browser, we see its fully parsed and
rendered form. The web browser begins with the initial content we provide in
our HTML. We can see the initial source HTML for any page we visit, whether
we authored it or not:

Our DOM Tree gets its name because of its shape: a root element connected to
child nodes that extend like the branches of a tree. This tree structure is how
the browser views our web page, and is why it is so important for us to open
and close our HTML tags in order (i.e., our tags define the structure of the tree
that the browser will create at runtime).

As web developers we can see and interact with the DOM tree for a page using
the browser's built-in developer tools:

The dev tools allow us to view and work with the parsed DOM elements in a
page. We can also use the dev tools to visually select an element in the page,
and find its associated DOM element:

https://developers.google.com/web/tools/chrome-devtools/beginners/html

NOTE: it's a good idea to get experience using, and learn about your
browser's dev tools so that you can debug and understand when things go
wrong while you are doing web development. There are a number of
guides to help you learn, like this one from Google.

Programming the DOM
Web pages are dynamic: they can change in response to user actions, different

https://developers.google.com/web/tools/chrome-devtools/

data, JavaScript code, etc. Where HTML defines the initial structure and content
of a page, the DOM is the current or actual content of the page as it exists
right now in your browser. And this can mean something quite different from
the initial HTML used to load the page.

Consider a web page like GMail (or another email web client). When you visit
your Inbox, the messages you see are not the same as when your friend visits
hers. The HTML for GMail is the same no matter who loads the page. But it
quickly changes in response to the needs of the current user.

So how does one modify a web page after it's been rendered in the browser?
The answer is DOM programming. We've been using this "DOM" acronym
without defining it, and its high time we did.

The Document Object Model (DOM) is a programming interface (i.e., set of
Objects, functions, properties) allowing scripts to interact with, and modify
documents (HTML, XML). The DOM is an object-oriented representation of a
web page. Client-side web programming is essentially using the DOM via
JavaScript to make web pages do things or respond to actions (e.g., user
actions).

You may have noticed in our work with JavaScript that there was nothing
particularly "webby" about it as a language: we wrote functions, worked with
arrays, created objects. Lots of programming languages let you do this.
JavaScript can't do anything with the web on its own. Instead, we need to
access and use the Objects, functions, and properties made available to us by
the DOM using JavaScript.

As web programmers we use the DOM via JavaScript to accomplish a number
of important tasks:

1. Finding and getting references to elements in the page
2. Creating, adding, and removing elements from the DOM tree

https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction

3. Inspecting and modifying elements and their content
4. Run code in response to events triggered by the user, browser, or other

parts of our code

Let's look at each one in turn.

Finding elements in the DOM with JavaScript
Our entry point to the DOM from JavaScript is via the global variable window .
Every web page runs in an environment created by the browser, and that
environment includes a global variable named window , which is provided by
the browser (i.e., we don't create it).

There are hundreds of Objects, methods, and properties available to our
JavaScript code via window . One example is window.document , which is how
we access the DOM in our code:

NOTE: since properties like document are available on the global window

object, it is common to simply write document instead of
window.document , since the global object is implied if no other scope is
given.

Our document's tree of elements are now accessible to us, and we can access
a number of well-known elements by name, for example:

// Access the document object for our web page, which is in the

current window

let document = window.document;

// Get the value of the document's <title>

let title = document.title;

https://developer.mozilla.org/en-US/docs/Web/API/Window
https://developer.mozilla.org/en-US/docs/Web/API/Window
https://developer.mozilla.org/en-US/docs/Glossary/Global_object#window_object_in_the_Browser
https://developer.mozilla.org/en-US/docs/Glossary/Global_object#window_object_in_the_Browser
https://developer.mozilla.org/en-US/docs/Web/API/Document
https://developer.mozilla.org/en-US/docs/Web/API/Document

There are lots more. We can easily experiment with these in the dev tools web
console, where we can access our window object. For example, here is the web
page https://unsplash.com/search/photos/toronto with the web console open,
and the result of window.document.images is shown, 41 elements are
returned in a collection:

We can also use a number of methods to search for and get a reference to one
or more elements in our document:

https://unsplash.com/search/photos/toronto

• document.getElementById(id) - returns an element whose id attribute/
property has the given id String

• document.querySelector(selectors) - similar to
document.getElementById(id) , but also allows querying the DOM using
CSS selectors for an element that doesn't have a unique id:

• document.querySelectorAll(selectors) - similar to
document.querySelector(selector) , but returns all elements that match
the selectors as a NodeList :

<div id="menu">...</div>

<script>

let menuDiv = document.getElementById('menu');

</script>

<div id="menu">

<p class="formatted">...</p>

</div>

<script>

// We can specify we want to query by ID using a leading #

let menuDiv = document.querySelector('#menu');

// We can specify we want to query by CLASS name using a

leading .

let para = document.querySelector('.formatted');

</script>

<div id="menu">

<p class="formatted">Paragraph 1...</p>

<p class="formatted">Paragraph 2...</p>

<p class="formatted">Paragraph 3...</p>

</div>

<script>

// Get all <p> elements in the document as a list

let pElements = document.querySelectorAll('p');

https://developer.mozilla.org/en-US/docs/Web/API/Document/getElementById
https://developer.mozilla.org/en-US/docs/Web/API/Document/getElementById
https://developer.mozilla.org/en-US/docs/Web/API/Document/querySelector
https://developer.mozilla.org/en-US/docs/Web/API/Document/querySelector
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Selectors
https://developer.mozilla.org/en-US/docs/Web/API/Document/querySelectorAll
https://developer.mozilla.org/en-US/docs/Web/API/Document/querySelectorAll
https://developer.mozilla.org/en-US/docs/Web/API/NodeList
https://developer.mozilla.org/en-US/docs/Web/API/NodeList

These four methods will work in any situation where you need to get a
reference to something in document. In fact, you could rely solely on
document.querySelector() and document.querySelectorAll() , which cover
the same functionality as a number of other DOM methods:

Creating elements and Modifying the DOM
with JavaScript
In addition to searching through the DOM using JavaScript, we can also make
changes to it. The DOM provides a number of methods that allow use to create
new content:

• document.createElement(name) - creates and returns a new element of
the type specified by name .

• document.createTextNode(text) - creates a text node (the text within an
element vs. the element itself).

These methods create the new nodes, but do not place them into the page. To
do that, we first need to find the correct position within the existing DOM tree,

// The following two lines of code do exactly the same thing.

// NOTE the use of # to indicate `demo` is an id in the second

example.

let elem = document.getElementById('demo');

let elem = document.querySelector('#demo');

let paragraphElement = document.createElement('p');

let imageElement = document.createElement('img');

let textNode = document.createTextNode('This is some text to

show in an element');

https://developer.mozilla.org/en-US/docs/Web/API/Document/createElement
https://developer.mozilla.org/en-US/docs/Web/API/Document/createElement
https://developer.mozilla.org/en-US/docs/Web/API/Document/createTextNode
https://developer.mozilla.org/en-US/docs/Web/API/Document/createTextNode

and then add our new node. We have to be clear where we want the new
element to get placed in the DOM.

For example, if we want to place a node at the end of the <body> , we could
use .appendChild() :

If we instead wanted to place it within an existing <div id="content"> , we'd
do this:

Both examples work the same way: given a parent node (document or <div

id="content">), add (append to the end of the list of children) our new
element.

We can also use .insertBefore(new, old) to accomplish something similar:
add our new node before the old (existing) node in the DOM:

Removing a node is similar, and uses removeChild() :

let paragraphElement = document.createElement('p');

document.body.appendChild(paragraphElement);

let paragraphElement = document.createElement('p');

let contentDiv = document.querySelector('#content');

contentDiv.appendChild(paragraphElement);

let paragraphElement = document.createElement('p');

let contentDiv = document.querySelector('#content');

let firstDivParagraph = contentDiv.querySelector('p');

contentDiv.insertBefore(paragraphElement, firstDivParagraph);

Examples
1. Add a new heading to a document

2. Create a new paragraph and insert into the document

// Remove a loading spinner

let loadingSpinner = document.querySelector('#loading-spinner');

// Get a reference to the loading spinner's parent element

let parent = loadingSpinner.parentNode;

parent.removeChild(loadingSpinner);

// Create a new <h2> element

let newHeading = document.createElement('h2');

// Add some text to the <h2> element we just created.

// Similar to doing <h2>This is a heading</h2>.

let textNode = document.createTextNode('This is a heading');

// Add the textNode to the heading's child list

newHeading.appendChild(textNode);

// Insert our heading into the document, at the end of <body>

document.body.appendChild(newHeading);

<div id="demo"></div>

<script>

// Create a <p> element

let pElem = document.createElement('p');

// Use .innerHTML to create text nodes inside our <p>...</p>

pElem.innerHTML = 'This is a paragraph.';

// Get a reference to our <div> with id = demo

Inspecting, Modifying a DOM element with
JavaScript
Once we have a reference to an element in JavaScript, we use a number of
properties and methods to work with it.

Element Properties
• element.id - the id of the element. For example: <p id="intro"></p>

has an id of "intro" .
• element.innerHTML - gets or sets the markup contained within the

element, which could be text, but could also include other HTML tags.
• element.parentNode - gets a reference to the parent node of this element

in the DOM.
• element.nextSibling - gets a reference to the sibling element of this

element, if any.
• element.className - gets or sets the value of the class attribute for the

element.

Element Methods
• element.querySelector() - same as document.querySelector() , but

begins searching from element vs. document

• element.querySelectorAll() - same as document.querySelectorAll() ,
but begins searching from element vs. document

• element.scrollIntoView() - scrolls the page until the element is in view.

• element.hasAttribute(name) - checks if the attribute name exists on this

https://developer.mozilla.org/en-US/docs/Web/API/Element#Properties
https://developer.mozilla.org/en-US/docs/Web/API/Element#Methods

element

• element.getAttribute(name) - gets the value of the attribute name on
this element

• element.setAttribute(name, value) - sets the value of the attribute
name on this element

• element.removeAttribute(name) - removes the attribute name from this
element

Examples
1. Reveal an error message in the page, by removing an element's hidden

attribute

2. Insert a user's profile picture into the page

<!-- The `hidden` attribute means this <div> won't be displayed

until it's removed -->

<div id="error-message" hidden>

<p>There was an error saving the document. Please try

again!</p>

</div>

<script>

// Try to save the file, and

let error = saveFile();

if (error) {

let elem = document.querySelector('#error-message');

elem.removeAttribute('hidden');

}

</script>

3. Add new paragraph elements to a div

// Insert the user's picture (e.g., in response to hovering

over a username)

let profilePic = document.createElement('img');

// Set attributes via getters/setters on the element vs.

attributes

profilePic.id = 'user-' + username;

profilePic.height = 50;

profilePic.src = './images/' + username + '-user-profile.jpg';

// Insert the profile pic into the document

document.body.appendChild(profilePic);

// Make sure the new image is visible, or scroll until it is

profilePic.scrollIntoView();

// Use .innerHTML as a getter and setter to update some text

let elem = document.querySelector('#text');

elem.innerHTML = '<p>This is a paragraph</p>';

elem.innerHTML = elem.innerHTML + '<p>This is another

paragraph</p>';

Events & Timers
Events
The DOM relies heavily on a concept known as event-driven programming. In
event-driven programs, a main loop (aka the event loop), processes events as
they occur.

Examples of events include things like user actions (clicking a button, moving
the mouse, pressing a key, changing tabs in the browser), or browser/code
initiated actions (timers, messages from background processes, reports from
sensors).

Instead of writing a program in a strict order, we write functions that should be
called in response to various events occurring. Such functions are often
referred to as event handlers, because they handle the case of some event
happening. If there is no event handler for a given event, when it occurs the
browser will simply ignore it. However, if one or more event handlers are
registered to listen for this event, the browser will call each event handler's
function in turn.

You can think of events like light switches, and event handlers like light
fixtures: flipping a light switch on or off triggers an action in the light
fixture, or possibly in multiple light fixtures at once. The lights handle the
event of the light switch being flipped.

DOM programming is typically done by writing many functions that execute in
response to events in the browser. We register our event handlers to indicate
that we want a particular action to occur. DOM events have a name we use to
refer to them in code.

https://en.wikipedia.org/wiki/Event-driven_programming

We can register a DOM event handler for a given event in one of two ways:

1. element.onevent = function(e) {...};

2. element.addEventListener('event', function(e) {...}) and
element.removeEventListener('event', function(e) {...})

In both cases above, we first need an HTML element. Events are emitted to a
target element. Elements in the DOM can trigger one or more events, and we
must know the name of the event we want to handle.

In the first method above, element.onevent = function(e) {...}; , a single
event handler is registered for the event event connected with the target
element element . For example, document.body.onclick = function(e)

{...}; , indicates we want to register an event handler for the click event on
the document.body element (i.e., <body>...</body>).

In the second method above, use addEventListener() to add as many
individual, separate event handlers as we need. Whereas element.onclick =

function(e) {...}; binds a single event handler (function) to the click

event for element , using element.addEventListener('click', function(e)

{...}); adds a new event handler (function) to any that might already exist.

Consider the following code:

let body = document.body;

function handleClick(e) {

// Process the click event

}

function handleClick2(e) {

// Another click handler

}

Because addEventListener() is more versatile than the older onevent

properties, you are encouraged to use it in most cases.

Here's an example of the first method, where we only need a single event
handler. In the following case, a web page has a Save button, and we want to
save the user's work when she clicks it.

Now consider the same code, but with multiple event handlers. In this case we
not only want to save the user's work, but also log the information in our web
analytics so we can keep track of how popular this feature is (how many times
it gets clicked):

<button id="btn-save">Save</button>

<script>

// Get a reference to our Save <button>

let saveBtn = document.querySelector('#btn-save');

function save() {

// Save the user's work

}

// Register a single event handler on the save button's click

event

saveBtn.onclick = function (e) {

// Save the user's work, calling a save() function we wrote

elsewhere

save();

};

</script>

Document has changes, Remember to

Save!

...

In this second example, it's possible for the browser to call more than one
function (event handler) in response to a single event (click). What's nice
about this is that different parts of our code don't have to be combined into a
single function. Instead, we can keep things separate (saving logic vs. analytics
logic).

A complete example of a page that listens for changes to the network online/
offline status, and updates the page accordingly, is available at online.html.

Common Events
There are many types of events we can listen for in the DOM, some of which
are very specialized to certain elements or Objects. However, there some
common ones we'll use quite often:

• load - fired when a resource has finished loading (e.g., a window , img)
• beforeunload - fired just before the window is about to be unloaded

(closed)
• focus - when the element receives focus (cursor input)
• blur - when the element loses focus
• click - when the user single clicks on an element
• dblclick - when the user double clicks on an element
• contextmenu - when the right mouse button is clicked
• keypress - when a key is pressed on the keyboard
• change - when the content of an element changes (e.g., an input element

in a form)
• mouseout - when the user moves the mouse outside the element
• mouseover - when the user moves the mouse over top of the element
• resize - when the element is resized

https://patrick-crawford.github.io/WebProgrammingPrinciples/assets/files/online.html-b6919026d88979f9aead42ac8d8f121c.txt
https://developer.mozilla.org/en-US/docs/Web/Events
https://developer.mozilla.org/en-US/docs/Web/Events/load
https://developer.mozilla.org/en-US/docs/Web/Events/load
https://developer.mozilla.org/en-US/docs/Web/Events/beforeunload
https://developer.mozilla.org/en-US/docs/Web/Events/beforeunload
https://developer.mozilla.org/en-US/docs/Web/Events/focus
https://developer.mozilla.org/en-US/docs/Web/Events/focus
https://developer.mozilla.org/en-US/docs/Web/Events/blur
https://developer.mozilla.org/en-US/docs/Web/Events/blur
https://developer.mozilla.org/en-US/docs/Web/Events/click
https://developer.mozilla.org/en-US/docs/Web/Events/click
https://developer.mozilla.org/en-US/docs/Web/Events/dblclick
https://developer.mozilla.org/en-US/docs/Web/Events/dblclick
https://developer.mozilla.org/en-US/docs/Web/Events/contextmenu
https://developer.mozilla.org/en-US/docs/Web/Events/contextmenu
https://developer.mozilla.org/en-US/docs/Web/Events/keypress
https://developer.mozilla.org/en-US/docs/Web/Events/keypress
https://developer.mozilla.org/en-US/docs/Web/Events/change
https://developer.mozilla.org/en-US/docs/Web/Events/change
https://developer.mozilla.org/en-US/docs/Web/Events/mouseout
https://developer.mozilla.org/en-US/docs/Web/Events/mouseout
https://developer.mozilla.org/en-US/docs/Web/Events/mouseover
https://developer.mozilla.org/en-US/docs/Web/Events/mouseover
https://developer.mozilla.org/en-US/docs/Web/Events/resize
https://developer.mozilla.org/en-US/docs/Web/Events/resize

All of the events described above can be used in either of the two ways we
discussed above. For example, if we wanted to use the mouseout event on an
element:

The Event Object
In the example code above, you may have noticed that our event handler
functions often looked like this:

The single e argument is an instance of the Event Object. The e or event is

<div id="map">...</div>

<script>

let map = document.querySelector('map');

// Method 1: register a single event handler via the on*

property

map.onmouseout = function (e) {

// do something here in response to the mouseout event on this

div.

};

// Method 2: register one of perhaps many event handlers via

addEventListener

map.addEventListener('mouseout', function (e) {

// do something here in response to the mouseout event on this

div.

});

</script>

element.onclick = function (e) {

// e is an instance of the Event object

};

https://developer.mozilla.org/en-US/docs/Web/API/Event
https://developer.mozilla.org/en-US/docs/Web/API/Event
https://developer.mozilla.org/en-US/docs/Web/API/Event
https://developer.mozilla.org/en-US/docs/Web/API/Event

provided to our event handler function in order to pass information about the
event, and to give us a chance to alter what happens next.

For example, we can get a reference to the element to which the event was
dispatched using e.target . We can also instruct the browser to prevent the
"default" action from happening as a result of this event using
e.preventDefault() , or stop the event from continuing to bubble up the DOM
(i.e., rise up the DOM tree nodes, triggering other event handlers along the
way) using `e.stopPropagation().

Here's an example showing how to use these:

Some events also provide specialized (i.e., derived from Event) event Objects
with extra data on them related to the context of the event. For example, a
MouseEvent gives extra detail whenever a click, mouse move, etc. event
occurs:

<button id="btn">Click Me</button>

<script>

document.querySelector('#btn').addEventListener('click',

function (e) {

// Prevent this event from doing anything more, we'll handle

it all here.

e.preventDefault();

e.stopPropagation();

// Get a reference to the <button> element

let btn = e.target;

// Change the text of the button

btn.innerHTML = 'You clicked Me!';

});

</script>

https://developer.mozilla.org/en-US/docs/Web/API/Event/target
https://developer.mozilla.org/en-US/docs/Web/API/Event/target
https://developer.mozilla.org/en-US/docs/Web/API/Event/preventDefault
https://developer.mozilla.org/en-US/docs/Web/API/Event/preventDefault
https://developer.mozilla.org/en-US/docs/Web/API/Event/stopPropagation
https://developer.mozilla.org/en-US/docs/Web/API/MouseEvent
https://developer.mozilla.org/en-US/docs/Web/API/MouseEvent

Timers
It's also possible for us to write an event handler that happens in response to a
timing event (delay) vs. a user or browser event. Using these timing event
handlers, we scheduling a task (function) to run after a certain period of time
has elapsed:

• setTimeout(function, delayMS) - schedule a task (function) to be run in
the future (delayMS milliseconds from now). Can be cancelled with
clearTimeout(timerID)

• setInterval(function, delayMS) - schedule a task (function) to be run
in the future every delayMS milliseconds from now. Function will be called
repeatedly. Can be cancelled with clearInterval(timerID)

Here's an example of using an interval to update a web page with the
current date and time every 1 second.

<div id="position"></div>

<script>

document.body.addEventListener('click', function (e) {

// Get extra info about this mouse event so we know where the

pointer was

let x = e.screenX;

let y = e.screenY;

// Display co-ordinates where the mouse was clicked: "Position

(300, 342)"

document.querySelector('#position').innerHTML = `Position

(${x}, ${y})`;

});

</script>

<p hidden>The current date and time is <time id="current-

date"></time></p>

<button id="btn-start">Start Timer</button>

<button id="btn-end">End Timer</button>

<script>

let startButton = document.querySelector('#btn-start');

let endButton = document.querySelector('#btn-end');

let timerId;

// When the user clicks Start, start our timer

startButton.onclick = function (e) {

// If the user clicks it more than once, ignore it once it's

running

if (timerId) {

return;

}

let currentDate = document.querySelector('#current-date');

currentDate.removeAttribute('hidden');

// Start our timer to update every 1000ms (1s), showing the

current date/time.

timerId = setInterval(function () {

let now = new Date();

currentDate.innerHTML = now.toLocaleString();

}, 1000);

};

endButton.onclick = function (e) {

// If the user clicks End when the timer isn't running, ignore

it.

if (!timerId) {

return;

}

// Stop the timer

clearInterval(timerId);

Practice Exercise
In this exercise, we will practice working with HTML, images, URLs, the DOM,
events, and JavaScript to create an interactive web page.

1. Create a folder called cats on your computer

2. Create a file inside the cats folder named index.html

3. Open a terminal to your cats folder (i.e., cd cats)

4. In your terminal, start a web server by running the following command:
npx http-server (alternatively, you can use the command: npx lite-

server , refer week 5 notes)

5. Open the cats folder in Visual Studio Code

6. Edit the index.html file so it contains a basic HTML5 web page, including
a <head> , <body> , etc. Try to do it from memory first, then look up what
you've missed.

7. Save index.html and try loading it in your browser by visiting your local
web server at http://localhost:8080/index.html

8. In your editor, modify the body of your index.html file to contain the text
of the poem in cats.txt. Use HTML tags to markup the poem for the web.
Your page should have a proper heading for the title, each line should
break at the correct position, and the poet's name should be bold.

9. Add an image of a cat to the page below the text. You can use
https://upload.wikimedia.org/wikipedia/commons/c/c1/
Sixweeks_old_cat%28aka%29.jpg.

https://patrick-crawford.github.io/WebProgrammingPrinciples/assets/files/cats-8d79cd13ef0b989f6809c581b58af526.txt
https://upload.wikimedia.org/wikipedia/commons/c/c1/Six_weeks_old_cat_%28aka%29.jpg
https://upload.wikimedia.org/wikipedia/commons/c/c1/Six_weeks_old_cat_%28aka%29.jpg

10. Adjust the width of your image so it fits nicely on your page. What
happens if you adjust the width and height ?

11. Create a new file in your cats folder called script.js . Add the following
line of JavaScript:

12. Add a script element to the bottom of your body (i.e., right before the
closing </body> tag). Set its src to a file called script.js :

13. Refresh your web page in the browser, and open your browser's Dev

Tools , and Web Console . Make sure you can see the cats! message
printed in the log.

14. Try changing cats! in script.js to some other message, save your
script.js file, and refresh your browser. Make sure your console updates
with the new message.

15. Modify index.html and update your tag: add an attribute id="cat-

picture" and remove the src="..." :

16. Modify your script.js file to add the following code:

console.log('cats!');

<script src="script.js"></script>

</body>

<!-- NOTE: there is no longer a src attribute in our HTML,

we'll do it JavaScript below -->

17. Save your script.js file and reload your browser. Do you still see a cat? If
not, check your web console for any errors.

18. Modify your script.js and change your cat URL used by img.src to use
https://cataas.com/cat. The cataas.com site provides cat pictures as a
service via URL parameters. Save script.js and reload your page a few
times. Do you see a different cat each time?

19. Modify your script.js file to move your image code to a separate
function. Make sure it still works the same way when you're done (save and
test in your browser):

20. Rewrite script.js to update the picture after 5 seconds:

window.onload = function () {

let img = document.getElementById('cat-picture');

img.src =

'https://upload.wikimedia.org/wikipedia/commons/c/c1/

Six_weeks_old_cat_%28aka%29.jpg';

};

function loadCatPicture() {

let img = document.getElementById('cat-picture');

img.src = 'https://cataas.com/cat';

}

window.onload = loadCatPicture;

function loadCatPicture() {

let img = document.getElementById('cat-picture');

img.src = 'https://cataas.com/cat';

}

https://cataas.com/cat
https://cataas.com/#/

21. Rewrite script.js to update the picture every 15 seconds, forever:

22. Rewrite script.js to update the picture only when the user clicks
somewhere in the window:

23. Modify index.html and put a <div>...</div> around all the text of the
poem. Give your div an id="poem-text" attribute:

function loadCatPicture() {

let img = document.getElementById('cat-picture');

img.src = 'https://cataas.com/cat';

}

window.onload = function () {

loadCatPicture();

// Call the loadCatPicture function every 15000ms

setInterval(loadCatPicture, 15 * 1_000 /* 15s = 15000ms */);

};

function loadCatPicture() {

let img = document.getElementById('cat-picture');

img.src = 'https://cataas.com/cat';

}

window.onload = function () {

loadCatPicture();

// Call the loadCatPicture function when the user clicks in

the window

window.onclick = loadCatPicture;

};

24. Rewrite script.js to load the picture only when the user clicks on the text
of the poem:

25. Rewrite script.js to also load the picture only when the user presses a
key on the keyboard:

<div id="poem-text">

<p>Cats sleep anywhere, any table, any chair....</p>

...

</div>

function loadCatPicture() {

let img = document.getElementById('cat-picture');

img.src = 'https://cataas.com/cat';

}

let poemText = document.getElementById('poem-text');

poemText.onclick = loadCatPicture;

function loadCatPicture() {

let img = document.getElementById('cat-picture');

img.src = 'https://cataas.com/cat';

}

let poemText = document.getElementById('poem-text');

poemText.onclick = loadCatPicture;

window.onkeypress = function (event) {

let keyName = event.key;

console.log('Key Press event', keyName);

loadCatPicture();

};

26. Rewrite script.js to also load the picture only when the user presses a
key on the keyboard, but only one of b, m, s, n, p, x :

27. Rewrite script.js to also load the picture only when the user presses a
key on the keyboard, but only one of b, m, s, n, p, x , and load the
picture with one of the supported cataas filters:

function loadCatPicture() {

let img = document.getElementById('cat-picture');

img.src = 'https://cataas.com/cat';

}

let poemText = document.getElementById('poem-text');

poemText.onclick = loadCatPicture;

window.onkeypress = function (event) {

let keyName = event.key;

console.log('Key Press event', keyName);

switch (keyName) {

case 'b':

case 'm':

case 's':

case 'n':

case 'p':

case 'x':

loadCatPicture();

break;

default:

console.log('Ignoring key press event');

}

};

https://cataas.com/#/

function loadCatPicture(filter) {

let url = 'https://cataas.com/cat';

let img = document.getElementById('cat-picture');

// If the function is called with a filter argument, add that

to URL

if (filter) {

console.log('Using cat picture filter', filter);

url += `?filter=${filter}`;

}

img.src = url;

}

let poemText = document.getElementById('poem-text');

poemText.onclick = function () {

loadCatPicture();

};

window.onkeypress = function (event) {

let keyName = event.key;

console.log('Key Press event', keyName);

switch (keyName) {

case 'b':

return loadCatPicture('blur');

case 'm':

return loadCatPicture('mono');

case 's':

return loadCatPicture('sepia');

case 'n':

return loadCatPicture('negative');

case 'p':

return loadCatPicture('paint');

case 'x':

return loadCatPicture('pixel');

28. Rewrite script.js so that we only load a new cat picture when the old
picture is finished loading (don't send too many requests to the server).
Also, add some cache busting:

// Demonstrate using a closure, and use an immediately

executing function to hide

// an `isLoading` variable (i.e., not global), which will keep

track of whether

// or not an image is being loaded, so we can ignore repeated

requests.

let loadCatPicture = (function () {

let isLoading = false;

// This is the function that will be bound to loadCatPicture

in the end.

return function (filter) {

if (isLoading) {

console.log('Skipping load, already in progress');

return;

}

let img = document.getElementById('cat-picture');

function finishedLoading() {

isLoading = false;

// Remove unneeded event handlers so `img` can be garbage

collected.

img.onload = null;

img.onerror = null;

img = null;

}

img.onload = finishedLoading;

img.onerror = finishedLoading;

https://www.keycdn.com/support/what-is-cache-busting

Introduction to CSS &
Syntax
In HTML5 we don't include markup related to how our page should look;
instead we focus on its structure, layout, and organization. We put all this
information in style sheets: text files that define CSS selectors and rules for
how to style our HTML elements.

CSS allows us to specify styles, layout, positioning, and other "style" properties
for HTML elements. CSS makes it possible for a page's style information to be
separated from its structure and content. Consider how much of an impact CSS
can have on the same HTML:

• CSS Zen Garden
• CSS Zen Garden HTML file
• CSS Zen Garden CSS file

CSS Syntax
CSS syntax is made up of rules, which are broken into two parts:

1. a selector, specifying the element(s) that should have the rules applied
2. one or more declarations, which are key/value pairs surrounded by {...}

braces

h1 {

color: blue;

font-size: 12px;

http://www.csszengarden.com/
https://csszengarden.com/examples/index
https://csszengarden.com/examples/style.css

In this example, the selector is h1 , which indicates that we want the following
rules to be applied to level-1 heading elements (i.e., all <h1></h1> elements in
the document). Next comes a list of two definitions, each ending with a ; .
These declarations follow the usual key/value syntax, with a property name
coming before the : , and a value coming after:

• color: blue; says we want to use the colour (note the spelling) blue
• font-size: 12px; says we want the font to be 12px.

Here's another example:

This indicates we want all <p></p> elements in the document to have red,
centered, underlined text.

Where to Put CSS
CSS can come from a number of sources in an HTML page:

1. Inline
2. Internal Embedded
3. External File(s)
4. The browser itself (e.g., default styles, or extra styles injected by a browser

extension)

Browsers apply styles to elements using a priority order that matches the list

p {

color: red;

text-align: center;

text-decoration: underline;

}

https://github.com/mozilla/gecko-dev/blob/master/layout/style/res/html.css

above. If more than one style rule is specified for an element, the browser will
prefer whatever is defined in Inline styles over Internal Embedded, Internal
Embedded over External files, etc.

Inline Example
CSS rules can be placed directly on an element via the style attribute:

Internal Embedded
If we want to apply the same CSS rules to more than one element, it makes
more sense to not duplicate them on every element's style attribute. One
solution is to use an internal embedded <style> element in the <head> or
<body> , similar to how embedded <script> elements work:

External File(s)
Putting large amounts of CSS in <style> elements makes our HTML harder to

<div style="background-color: green">...</div>

<style>

p {

color: red;

}

div {

background-color: blue;

text-align: center;

}

</style>

read and maintain (CSS is about separating style from structure), and also
causes our page to perform worse in terms of load times (i.e., the styles can't
be cached by the browser). To overcome this, we often include external .css

files via the <link> element within the document's <head> :

We can include many stylesheets in this way (i.e., everything doesn't have to
go in one file), and we can include .css files on the same origin, or a remote
origin:

In the example above, the page uses the popular Bootstrap CSS styles along
with some locally (i.e., local to the web server) styles in styles.css .

A .css file included in this way can also @import to have even more .css

files get loaded at runtime:

<!doctype html>

<html>

<head>

<link rel="stylesheet" href="styles.css" type="text/css" />

</head>

</html>

<!doctype html>

<html>

<head>

<link

rel="stylesheet"

href="https://stackpath.bootstrapcdn.com/bootstrap/4.1.3/

css/bootstrap.min.css"

/>

<link rel="stylesheet" href="styles.css" type="text/css" />

</head>

</html>

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/link
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/link
https://getbootstrap.com/
https://developer.mozilla.org/en-US/docs/Web/CSS/@import
https://developer.mozilla.org/en-US/docs/Web/CSS/@import

In this example, the popular Font Awesome CSS library for font icons has been
imported via a .css file.

CSS Selectors
We've already learned a few CSS Selectors when we discussed
querySelector() and querySelectorAll() . The word Selector refers to the
fact that these methods take a CSS Selector and return DOM elements that
match. For example:

• document.querySelector('#output') would return the element with
attribute id="output"

• document.querySelectorAll('.logo') would return all elements with a
class of logo

• document.querySelectorAll('img') would return all elements

These same selectors, and many more, can also be used in our CSS rulesets.

Tag/Type Selectors
The name of an HTML element can be used to specify the styles associated
with all elements of the given type. For example, to indent all <p> text in our
document, we could do this:

/* Import Font Awesome */

@import url(https://use.fontawesome.com/releases/v5.4.2/css/

all.css);

p {

https://fontawesome.com/
https://developer.mozilla.org/en-US/docs/Web/CSS/text-indent
https://developer.mozilla.org/en-US/docs/Web/CSS/text-indent

Class Selectors
Often we want to apply styles to some but not all elements of a certain kind.
Perhaps we only want some of our page's <p> elements to have a particular
look. To achieve this, we define a class, and then put that class on the
elements that require it:

A class can be applied to elements that aren't of the same type:

I this example, both the <h1> element, and the <p> element will have the
display: none style applied, hiding them so they don't appear in the page.

<style>

.demo {

text-decoration: underline red;

}

</style>

<p>This is a paragraph that won't get the styles below applied to

it (doesn't include the class)</p>

<p class="demo">This paragraph will get the styling applied.</p>

<p class="demo">And so will this one.</p>

<style>

.invisible {

display: none;

}

</style>

<h1 class="invisible">Title</p>

<p class="invisible">This is a paragraph.</p>

If we want to be more specific, and only apply styles to elements of a given
type which also have a given class, we can do this:

An element can also have multiple classes applied, each one adding different
styling:

<style>

p.note {

font-weight: bold;

}

</style>

<p class="note">This is a paragraph that also uses the note

class.</p>

<div class="note">

This div uses the note class too, but because we said p.note, no

styles are used.

</div>

<style>

.invisible {

display: none;

}

.example {

color: green;

background-color: red;

}

</style>

<p class="invisible example">This is a paragraph that uses two

classes at once.</p>

ID Selectors
In many cases, we have only a single element that should use styles. Using a
type or class selector would be overly broad, and so we tend to use an id

instead. Recall that only one HTML element in a document can have a given
id attribute: it must be unique.

When we use the id as a selector, we prefix it with the # symbol. Notice that
the HTML does not use the # symbol though.

Contextual Selectors
Another common way to write selectors is to use the position of elements in
the DOM. The context selector indicates the context, or placement/nesting
(i.e., determined by the parent node) of the element.

For example, if we want to apply styles to <p> elements that are children of
<div> elements, we could do this:

<style>

#summary {

background-color: skyblue;

}

</style>

<div id="summary"></div>

<style>

div p {

font-size: 16px;

}

Grouping Selectors
As our CSS grows, it's common that we'll notice that we're repeating the same
things multiple times. Instead of doing this, we can group a number of
selectors together into a comma-separated list:

Here we've used grouping twice to cut-down on the number of times we have
to repeat things. In the first case, we defined a height of 100% (full height of
the window) for the <html> and <body> elements (they don't have a height by
default, and will only be as tall as the content within them). We've also
declared some font and color information for all the headings we want to use.

Suggested Readings
• Introduction to CSS
• Learning to Style HTML using CSS
• CSS: Cascading Style Sheets on MDN

html,

body {

height: 100%;

}

h1,

h2,

h3,

h4,

h5,

h6 {

font-family: Serif;

color: blue;

}

https://developer.mozilla.org/en-US/docs/Learn/CSS/Introduction_to_CSS
https://developer.mozilla.org/en-US/docs/Learn/CSS
https://developer.mozilla.org/en-US/docs/Web/CSS

Applied CSS
Containers for Styling
We've discussed <div> and in the past, but their purpose may not
have been clear. Why bother wrapping other elements in <div>...</div> or
... when they don't display any different?

With CSS we can now start to take advantage of what they provide. If we think
of them as containers which can be used to group styling, their purpose will
become more clear.

A <div> is a block level element, and an inline element. Depending on
how we want to group and apply styling, we can use one or both. Consider the
following:

<style>

.info-box {

border: solid green;

}

.info-box p {

font-family: Serif;

}

.info-box span {

font-weight: bold;

}

.info-box img {

width: 75px;

height: 75px;

CSS Units
Many CSS values require units to be specified, for example, font sizes, widths,
heights, etc. At first you might think that we should specify things in pixels;
however, browsers need to work on such a wide variety of hardware and
render to so many different displays (watches to billboards), we need more
options. It's also important to be able to specify sizes using relative units vs.
fixed, for layouts that need to adapt to changing conditions and still retain the
correct proportions.

There is one exception, and that is for 0 (i.e., zero), which never needs a unit
(i.e., 0px is the same as 0% , etc).

The most common units we use in CSS are:

Let's look at each of these in turn:

• em (the width of the capital letter M) - a scalable unit that is used in web
media, and is equal to the current font-size . If the font-size is 12pt ,
1em is the same as 12pt . If the font-size is changed, 1em changes to
match. We can also use multiples: 2em is twice the font-size , and .5em

is half. Using em for sizes is popular on the web, since things have to scale
on mobile vs. desktop (i.e., fixed unit sizes don't work as the screen
shrinks/expands).

• pt - a fixed-size Point unit that comes from print media, where 1pt equals
1/72 of an inch.

• px - pixels are fixed size units for web media (screens), and 1px is equal

1em = 12pt = 16px = 100%

to one dot on a computer display. We use px on the web when we need
"pixel perfect" sizing (e.g., image sizes).

• % - the percent unit is similar to em in that it scales with the size of the
display. 100% is the same as the current font-size .

• vw , vh - the viewport width and height units are percentages of the visible
space in the viewport (the part of the page you can see, the window's
width and height). 1vw is the same as 1% of the width of the viewport, and
80vh is the same as 80% of the visible height.

You will also sometimes encounter other ways of measurement that use full
words: xx-small, x-small, small, medium, large, x-large, xx-large,

smaller, larger, thin, medium, thick

Here's an example that uses a number of the units mentioned above:

<style>

html,

body {

height: 100vh;

}

.box {

margin: 10px;

font-size: 2em;

height: 150px;

border: medium solid black;

}

</style>

<div class="box"></div>

CSS Colours (color)
CSS allows us to define colour values for many declarations. We do so by
specifying a colour using one of the following notations:

• Hexadecimal Red, Green, Blue: written using 3 double-digit hex numbers,
and starting with a # sign. Each of the 3 pairs represents a value between
0 and 255 for Red, Green, and Blue: #000000 is pure Black and #ffffff is
pure White, and #ffd700 is Gold.

• RGB or RGBA notation: here the red, green, blue, and sometimes alpha
(i.e., opacity) are defined in decimal notation: #ffffff is the same as
rgb(255, 255, 255) and #ffd700 is the same as rgb(255, 215, 0) . If
we want to define how see-through the colour is (by default you can't see
through a colour), we add an alpha value: rgba(0, 191, 0, 0.5) means
that the colour will be 50% see through.

• Named colours: some colours are so common that they have their own
name defined in the CSS standard. For example: white , black , green ,
red , but also chocolate , darkorange , peru , etc.

The easiest way to understand this is using a Colour Picker tool, which lets you
visually see the difference in changing values.

CSS Properties and Values
A property is assigned to a selector in order to manipulate its style. The CSS
properties are defined as part of the CSS standard. When you want to know
how one of them works, or which values you can assign, you can look at the
documentation on MDN. For example:

https://developer.mozilla.org/en-US/docs/Web/CSS/color_value#Color_keywords
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Colors/Color_picker_tool
https://developer.mozilla.org/en-US/docs/Web/CSS/Reference
https://developer.mozilla.org/en-US/docs/Web/CSS/Reference

• text-indent

• color

• background-color

• border

There are hundreds of properties we can tweak as web developers, and it's a
good idea to explore what's available, and to look at how other web sites use
them via the developer tools.

A property can have one or more values. A the possible values a property can
have also comes from the standard. For example:

The text-decoration property is defined to take one of a number of values,
each of which is also defined in the standard.

Exploring CSS Properties and
Values in the Dev Tools
By far the best way to learn about CSS is to look at how other sites use it.
When you find something on the web that you think looks interesting, open
your browser's dev tools and inspect the CSS Styles:

p {

text-decoration: underline;

}

.spelling-error {

text-decoration: red wavy underline;

}

https://developer.mozilla.org/en-US/docs/Web/CSS/text-indent
https://developer.mozilla.org/en-US/docs/Web/CSS/text-indent
https://developer.mozilla.org/en-US/docs/Web/CSS/color
https://developer.mozilla.org/en-US/docs/Web/CSS/color
https://developer.mozilla.org/en-US/docs/Web/CSS/background-color
https://developer.mozilla.org/en-US/docs/Web/CSS/background-color
https://developer.mozilla.org/en-US/docs/Web/CSS/border
https://developer.mozilla.org/en-US/docs/Web/CSS/border
https://developer.mozilla.org/en-US/docs/Web/CSS/text-decoration
https://developer.mozilla.org/en-US/docs/Web/CSS/text-decoration

You can look at the specific properties specified for an element, or see all the
computed styles (i.e., everything, including all default values). You can also try
toggling these on and off, or double-click the values to enter your own.

CSS text Properties
There are dozens of properties that affect how text is rendered. These include
things like the color, spacing, margins, font characteristics, etc.

h2 {

color: red;

https://developer.mozilla.org/en-US/docs/Learn/CSS/Styling_text/Fundamentals

font Properties
We can use the font-family property to specify a font, or list of fonts, for the
browser to apply to an element. The font must be available on the user's
computer, otherwise the next font in the list will be tried until one is found that
is installed, or a default font will be used.

In general it is safe to assume that the following fonts are available:

• Helvetica, Arial, Verdana, sans-serif - sans-serif fonts
• "Courier New", Courier, monospace - monospace fonts
• Georgia, "Times New Roman", Times, serif - serif fonts

You can see a list of the fonts, and OS support here.

Web Fonts - @font-face

Modern browsers also allow custom fonts to be included as external files, and

h3 {

font-family: Arial;

}

h4 {

font-family: 'Times New Roman', Times, serif;

}

h5 {

font-size: 18pt;

font-style: italic;

font-weight: 500;

}

https://www.cssfontstack.com/
https://developer.mozilla.org/en-US/docs/Learn/CSS/Styling_text/Web_fonts#Web_fonts

downloaded as needed by the web site. This is often the preferred method for
designers, who don't want to be limited to the set of fonts available on all
operating systems.

A font is a file that describes the curves and lines needed to generate
characters at different scales. There are various formats, from OTF (OpenType
Format) to TTF (TrueType Format) to WOFF (Web Open Font Format), etc. In
order for the browser to use a new font, it has to be downloadable via one or
more URLs. We then tell the browser which font files to download in our CSS
via the @font-face property:

Many fonts have to be purchased, but there are some good sources of high
quality, freely available fonts for your sites:

• Font Squirrel
• dafont.com
• Google Fonts

For example, we can use the popular "Lobster" font from Google by doing the
following in our CSS:

@font-face {

font-family: "FontName"

src: url(font.woff2) format('woff2'),

url(font.ttf) format('truetype');

}

body {

font-family: "FontName";

}

@import url(https://fonts.googleapis.com/css?family=Lobster) p {

https://www.fontsquirrel.com/
https://www.dafont.com/
https://fonts.google.com/
https://fonts.google.com/specimen/Lobster
https://fonts.google.com/specimen/Lobster

font-size property
Using the font-size property, font sizes can be given in fixed or relative units,
depending on how we want our text to scale on different devices:

Text Effects
There are numerous effects that can be added to text (or any element), many
beyond the scope of this initial exploration of CSS. Here are a few simple
examples to give you an idea

text-shadow allows a shadow to be added to text, giving it a 3-D style
appearance. The value includes a colour, x and y offsets that determine the
distance of the shadow from the text. Finally, we can also add a blur-radius ,
indicating how much to blur the shadow.

h1 {

font-size: 250%; /* scaled to 250% of regular font size */

}

p {

font-size: 20pt; /* size in points -- 20/72 of an inch */

}

.quote {

font-size: smaller; /* smaller than normal size */

}

.bigger {

font-size: 1.5em; /* 1.5 times larger than the 'M' in normal

font size */

}

https://developer.mozilla.org/en-US/docs/Web/CSS/font-size
https://developer.mozilla.org/en-US/docs/Web/CSS/font-size
https://developer.mozilla.org/en-US/docs/Web/CSS/text-shadow
https://developer.mozilla.org/en-US/docs/Web/CSS/text-shadow

text-overflow can be used to determine what the browser should do when
the amount of text exceeds the available space in a container (e.g. in a <div>

or <p> that isn't wide enough). For example, we can specify that we want to
clip the contents and not show any more, or we can automatically display
... , the ellipsis .

background Properties
Every element has a background that we can modify. We might, for example,
want to specify that the background be a certain colour; or we might want to
use an image, or even tile an image multiple times (like wallpaper to create a
pattern); or we might want to create a gradient, from one colour to another. All
of these options and more are possible using the background property.

.shadow-text {

text-shadow: 1px 1px 2px pink;

}

<style>

.movie-title {

text-overflow: ellipsis;

}

</style>

Pirates of the Caribbean: The Curse of

the Black Perl

div.error {

background: red;

}

https://developer.mozilla.org/en-US/docs/Web/CSS/text-overflow
https://developer.mozilla.org/en-US/docs/Web/CSS/text-overflow
https://developer.mozilla.org/en-US/docs/Web/CSS/background
https://developer.mozilla.org/en-US/docs/Web/CSS/background

Styling Links
We can control the way that links (i.e., <a>) appear in our document. By
default they will have a solid blue underline, and when visited, a purple solid
underline. If you want to remove the underline, or change it's colour to match
the theme of a page, we can do that using CSS pseudo-classes .

With pseudo-classes we can specify certain states for the elements in our
selector, for example:

• a:link - a normal, unvisited link (normally blue underline)
• a:visited - a link the user has visited previously (normally purple

underline)
• a:hover - a link when hovered with the mouse
• a:active - a link when it is clicked (i.e., while the mouse button is

pressed)

NOTE: pseudo-classes can be used with any element, but we mention
them here in relation to styling links, since we often need them to deal
with different states for a link.

Let's alter our links so that they use blue text, with no underline. However,
when hovered, add back the underline:

a:link,

a:visited {

text-decoration: none;

}

a:hover,

https://developer.mozilla.org/en-US/docs/Web/CSS/Pseudo-classes
https://developer.mozilla.org/en-US/docs/Web/CSS/Pseudo-classes

CSS and the DOM via JavaScript
We've been discussing CSS in the context of HTML, but we also need to explore
how to work with it via JavaScript. The DOM provides us a number of methods
for examining and changing the CSS styles associated with elements.

First, we can use a DOM element's style property. Doing so gives us access to
the inline style attribute of the element. We can get or set particular CSS
property values via the style element using camelCase versions of the CSS
property names. For example, background-color becomes backgroundColor ,
while width remains width .

Usually we don't need (or want) to alter properties one by one via the DOM.
Instead, it's more common to add or remove classes to elements, which pre-
define a set of properties.

Similar to an element's style property, we can also use its classList

property. It has a number of useful methods:

• add() - adds one (or more) class names to the element. If any of them are
already present, they are ignored.

• remove() - removes one (or more) class names from the element.
• toggle() - toggles a class name on (adds it) or off (removes it), depending

on the current state.

// Change the background colour of all paragraphs to red

var elems = document.querySelectorAll('p');

for (var i = 0, len = elems.length; i < len; i++) {

elems[i].style.backgroundColor = 'red';

}

https://developer.mozilla.org/en-US/docs/Web/API/CSS_Object_Model/Using_dynamic_styling_information
https://developer.mozilla.org/en-US/docs/Web/API/HTMLElement/style
https://developer.mozilla.org/en-US/docs/Web/API/HTMLElement/style
https://developer.mozilla.org/en-US/docs/Web/API/Element/classList#Methods

• contains() - checks if the specified class name is already defined for this
element.

• replace() - replaces an old class name with the new one.

Using classes and classList , it's possible for us to define various states for
our UI by creating multiple classes, and then add/remove them at runtime as
the program runs and data changes.

Imagine you were creating a media player, and needed to show lists of songs
and videos. Some of the media has been played by the user, and some is new.
We can define classes for both, and then use JavaScript to apply the correct
class to each:

<style>

.media-played {

background: gray;

}

.media-new {

border: dashed red;

}

</style>

...

<script>

// Loop through an array of media objects, and set the class for

each one

mediaItems.forEach(function (media) {

var mediaElem = document.getElementById(media.id);

if (media.played) {

mediaElem.add('media-played');

} else {

mediaElem.add('media-new');

}

});

Exercise: Using Third-Party CSS
Libraries
We've been focused on the mechanics of writing CSS ourselves, and this is an
important skill. In addition, it's a good idea to know how to use third-party CSS
libraries created by other developers. There are many pre-existing CSS libraries
and frameworks we can use to help us create the web pages and apps we
desire.

How to use Third-Party CSS
There is a general pattern to using any CSS library in your web page.

1. Find a library you want to use. We've listed a number of interesting ones
below.

2. Read the documentation. Every library is different, and the "installation"
and "usage" instructions will usually guide you on next steps. Get used to
reading technical documentation, so that you can learn to solve your own
problems.

3. Figure out which file or files you need to include in your HTML. This will
typically include one or more .css files, and maybe .js ,fonts, etc. You
will likely need to use <link> and <script> elements

4. See if the CSS library you want to use is available via a Content Delivery
Network (CDN). Try searching for your chosen library on cdnjs or another
CDN.

5. Read the docs for your library to see if you need to include any special
markup, classes, or other info in your HTML file in order for things to work.
CSS libraries operate on HTML, and sometimes they will expect it to be in a
particular format.

https://en.wikipedia.org/wiki/Content_delivery_network
https://en.wikipedia.org/wiki/Content_delivery_network
https://cdnjs.com/

Popular CSS Libraries
Here's a list of some popular CSS libraries and frameworks to get you started.

First, a few examples of simple "drop in" style libraries, where you simply
include the CSS file, and everything "Just Works":

• Normalize.css - normalizes CSS so it is the same in all browsers (CDN link)
• Milligram - tiny set of default styles to make your site look great (CDN link)
• Tacit - CSS framework with no classes.

Next, there are lots of stylesheets you can use to improve the readability of
your text:

• TufteCSS - a stylesheet based on the ideas of Edward Tufte about
typography and text (CDN link)

• Gutenberg - a drop-in stylesheet for Printing to a printer
• Font Awesome - beautiful fonts and icons

In addition to changing how our text looks, a lot of CSS libraries add interesting
and playful animations and effects to spice up our HTML:

• Hover - hover effects for links, buttons, and logs
• Balloon.css - tooltips and popups
• Animate.css - animations for HTML elements
• CSShake - more animations for HTML elements (CDN link)
• CSSgram - Instagram style filters for HTML images

Another common problem CSS can solve is what to do while we wait for things
to finish loading:

http://necolas.github.io/normalize.css/
https://cdnjs.com/libraries/normalize
https://milligram.io/
https://cdnjs.com/libraries/milligram
https://yegor256.github.io/tacit/
https://edwardtufte.github.io/tufte-css/
https://cdnjs.com/libraries/tufte-css
https://github.com/BafS/Gutenberg
https://fontawesome.com/
http://ianlunn.github.io/Hover/
http://kazzkiq.github.io/balloon.css/
http://daneden.github.io/animate.css
http://elrumordelaluz.github.io/csshake/
https://cdnjs.com/libraries/csshake
https://una.im/CSSgram/

• SpinKit - loading animations (CDN link)
• CSS Loader - more loading animations (CDN link)

Many CSS libraries have grown into more complex suites of layout, component,
typography, navigation, and other solutions. We often refer to these as
"frameworks" to indicate the expanded scope. There are many to choose from,
including:

• Pure.css - tiny CSS framework for responsive layouts, buttons, forms,
menus, etc.

• PaperCSS - playful, hand-drawn style UI kit
• Bootstrap - one of the most popular UI grid and component system for

mobile and desktop web. Lots of themed versions of this too, for example
Material UI

• UIKit - lightweight toolkit for building web app front-ends
• Semantic UI - UI framework, lots of responsive components (CDN link)
• Tailwind CSS - is a utility-first CSS framework for rapidly building modern

websites without ever leaving your HTML.

http://tobiasahlin.com/spinkit/
https://cdnjs.com/libraries/spinkit
http://www.raphaelfabeni.com.br/css-loader/
https://cdnjs.com/libraries/css-loader
https://purecss.io/
https://www.getpapercss.com/
http://getbootstrap.com/
http://daemonite.github.io/material/
https://getuikit.com/
https://semantic-ui.com/
https://cdnjs.com/libraries/semantic-ui
https://tailwindcss.com/

Box Model
All elements in the DOM can be considered to be a box. The Box Model is a
specification for how all the various attributes of an element's sizing relate to
each other. A "box" is made up of four distinct parts:

• margin - area (whitespace) between this element and other surrounding
elements

• border - a line (or lines) surrounding this element
• padding - area (whitespace) between the border and the inner content of

the element
• content - the actual content of the element (e.g., text)

The easiest way to visual this is using your browser's dev tools, which have
tools for viewing and altering each of these parts.

The sizes of each of these can be controlled through CSS properties:

• margin

◦ margin-top

https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Box_Model
https://developer.mozilla.org/en-US/docs/Tools/Page_Inspector/How_to/Examine_and_edit_the_box_model
https://developer.mozilla.org/en-US/docs/Web/CSS/margin
https://developer.mozilla.org/en-US/docs/Web/CSS/margin
https://developer.mozilla.org/en-US/docs/Web/CSS/margin-top
https://developer.mozilla.org/en-US/docs/Web/CSS/margin-top

◦ margin-right

◦ margin-bottom

◦ margin-left

• border

◦ border-style

▪ border-top-style

▪ border-right-style

▪ border-bottom-style

▪ border-left-style

◦ border-width

▪ border-top-width

▪ border-right-width

▪ border-bottom-width

▪ border-left-width

◦ border-color

▪ border-top-color

▪ border-right-color

▪ border-bottom-color

▪ border-left-color

• padding

◦ padding-top

◦ padding-right

◦ padding-bottom

◦ padding-left

Each of these is a shorthand property that lets you specify multiple CSS
properties at the same time. For example, the following are equivalent:

https://developer.mozilla.org/en-US/docs/Web/CSS/margin-right
https://developer.mozilla.org/en-US/docs/Web/CSS/margin-right
https://developer.mozilla.org/en-US/docs/Web/CSS/margin-bottom
https://developer.mozilla.org/en-US/docs/Web/CSS/margin-bottom
https://developer.mozilla.org/en-US/docs/Web/CSS/margin-left
https://developer.mozilla.org/en-US/docs/Web/CSS/margin-left
https://developer.mozilla.org/en-US/docs/Web/CSS/border
https://developer.mozilla.org/en-US/docs/Web/CSS/border
https://developer.mozilla.org/en-US/docs/Web/CSS/border-style
https://developer.mozilla.org/en-US/docs/Web/CSS/border-style
https://developer.mozilla.org/en-US/docs/Web/CSS/border-top-style
https://developer.mozilla.org/en-US/docs/Web/CSS/border-top-style
https://developer.mozilla.org/en-US/docs/Web/CSS/border-right-style
https://developer.mozilla.org/en-US/docs/Web/CSS/border-right-style
https://developer.mozilla.org/en-US/docs/Web/CSS/border-bottom-style
https://developer.mozilla.org/en-US/docs/Web/CSS/border-bottom-style
https://developer.mozilla.org/en-US/docs/Web/CSS/border-left-style
https://developer.mozilla.org/en-US/docs/Web/CSS/border-left-style
https://developer.mozilla.org/en-US/docs/Web/CSS/border-width
https://developer.mozilla.org/en-US/docs/Web/CSS/border-width
https://developer.mozilla.org/en-US/docs/Web/CSS/border-top-width
https://developer.mozilla.org/en-US/docs/Web/CSS/border-top-width
https://developer.mozilla.org/en-US/docs/Web/CSS/border-right-width
https://developer.mozilla.org/en-US/docs/Web/CSS/border-right-width
https://developer.mozilla.org/en-US/docs/Web/CSS/border-bottom-width
https://developer.mozilla.org/en-US/docs/Web/CSS/border-bottom-width
https://developer.mozilla.org/en-US/docs/Web/CSS/border-left-width
https://developer.mozilla.org/en-US/docs/Web/CSS/border-left-width
https://developer.mozilla.org/en-US/docs/Web/CSS/border-color
https://developer.mozilla.org/en-US/docs/Web/CSS/border-color
https://developer.mozilla.org/en-US/docs/Web/CSS/border-top-color
https://developer.mozilla.org/en-US/docs/Web/CSS/border-top-color
https://developer.mozilla.org/en-US/docs/Web/CSS/border-right-color
https://developer.mozilla.org/en-US/docs/Web/CSS/border-right-color
https://developer.mozilla.org/en-US/docs/Web/CSS/border-bottom-color
https://developer.mozilla.org/en-US/docs/Web/CSS/border-bottom-color
https://developer.mozilla.org/en-US/docs/Web/CSS/border-left-color
https://developer.mozilla.org/en-US/docs/Web/CSS/border-left-color
https://developer.mozilla.org/en-US/docs/Web/CSS/padding
https://developer.mozilla.org/en-US/docs/Web/CSS/padding
https://developer.mozilla.org/en-US/docs/Web/CSS/padding-top
https://developer.mozilla.org/en-US/docs/Web/CSS/padding-top
https://developer.mozilla.org/en-US/docs/Web/CSS/padding-right
https://developer.mozilla.org/en-US/docs/Web/CSS/padding-right
https://developer.mozilla.org/en-US/docs/Web/CSS/padding-bottom
https://developer.mozilla.org/en-US/docs/Web/CSS/padding-bottom
https://developer.mozilla.org/en-US/docs/Web/CSS/padding-left
https://developer.mozilla.org/en-US/docs/Web/CSS/padding-left
https://developer.mozilla.org/en-US/docs/Web/CSS/Shorthand_properties

In the code above for margin , notice how the the different portions of the
margin get translated into a single line. The order we use follows the same
order as a clockface, the numbers begin at the top and go clockwise around:

We often shorten our lists when multiple properties share the same values:

/* Use separate properties for all aspects */

.example1 {

border-width: 1px;

border-style: solid;

border-color: #000;

margin-top: 5px;

margin-right: 10px;

margin-bottom: 15px;

margin-left: 20px;

}

/* Use shorthand properties to do everything at once */

.example2 {

border: 1px solid #000;

margin: 5px 10px 15px 20px;

}

.example2 {

/* top right bottom left */

margin: 5px 10px 15px 20px;

}

.example3 {

/* Everything is different, specify them all */

margin: 10px 5px 15px 20px;

}

When two elements that specify a margin at the top and bottom are stacked,
the browser will collapse (i.e., combine) the two into a single margin, whose
size is the largest of the two. Consider the following CSS:

Here the stylesheet calls for a <p> element to have 20px of whitespace above
it. However, since the <h1> has 25px of whitespace below it, when the two are
placed in the DOM one after the other, the distance between them will be 25px

vs. 45px (i.e., the browser won't apply both margins, but just make sure that
both margins are honoured).

display Property
CSS lets us control how an element gets displayed in the DOM. This is a large
topic, and we'll give an overview of some of the most common display types.
Further study is required to fully appreciate the subtleties of each layout
method.

Up to this point we've been talking a lot about the DOM, a tree of nodes for
every element in our document. At this stage it's also useful to understand that
in addition to the DOM tree, a browser also creates a render tree, which is a

<style>

h1 {

margin-bottom: 25px;

}

p {

margin-top: 20px;

}

</style>

<h1>Heading</h1>

<p>Paragraph</p>

https://developers.google.com/web/fundamentals/performance/critical-rendering-path/render-tree-construction

tree of nodes as they will should be rendered based on CSS. A node may exist
in the DOM tree but not in the render tree, for example. The nodes in the DOM
tree can also have very different rendering applied based on the type of
display we specify.

Perhaps the easiest way to get started understanding display types is to look
at what display: none; does:

When an element uses a display type of none , nothing will be painted to the
screen. This includes the element itself, but also any of its children. This allows
us to create UI or aspects of a page but not display them...yet. For example,
we might want to reveal a dialog box, information message, image, or the like
only in response to the user performing some action (e.g., clicking a button).
Or, we might want to remove something like a loading screen when the web
page is fully loaded:

<style>

.hidden {

display: none;

}

.error-msg {

/* styles for error message UI */

}

</style>

<div class="hidden error-msg">

<h1>Error!</h1>

<p>There was an error completing your request.</p>

</div>

<style>

/* Place a semi-transparent box over the entire screen at

startup */

If elements don't have a display type of none , they get included in the render
tree and eventually painted to the screen. If we don't specify a display type,
the default is inline for inline elements (like <a> and) and block for
block-level elements (like <p> and <div>).

With inline , boxes are laid out horizontally (typically left to right, unless we
are doing rtl), starting at the top corner of the parent.

We can also specify that an element should be display: block; , which will
layout blocks in a vertical way, using margin to determine the space between
them. To understand the difference, try this using this snippet of code an HTML
page, and change the display from block to inline :

We can also control the way that elements are laid out within an element (i.e.,
its children). Some of the display types for inside layout options include:

• table - make elements behave as though they were part of a <table>

• flex - lays out the contents according to the flexbox model
• grid - lays out the contents according to the grid model

A great way to learn a bit about the latter two is to work through the following
online CSS learning games:

• Flexbox Froggy

<style>

h1 {

display: block; /* try changing to `inline` */

}

</style>

<h1>One</h1>

<h1>Two</h1>

<h1>Three3</h1>

https://developer.mozilla.org/en-US/docs/Web/CSS/direction
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Table
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Table
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Display#display_flex
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Display#display_flex
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Flexible_Box_Layout
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Display#display_grid
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Display#display_grid
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Grid_Layout/Basic_Concepts_of_Grid_Layout
https://flexboxfroggy.com/

• Flexbox Defense
• Grid Garden

Common Layout Tasks
1. How do I centre inline text horizontally?

2. How do I centre a block element's contents?

3. How do I centre something vertically?

position Property
Many web interface designs require more sophisticated element positioning
than simply allowing everything to flow. Sometimes we need very precise

p {

text-align: center;

}

.center {

width: 400px; /* set a fixed width */

margin: 0 auto; /* allow the browser to split the margin

evenly */

}

.vertical-center {

display: table-cell; /* make the element work like a cell in

a table */

vertical-align: middle; /* align to the centre vertically */

text-align: center; /* align to centre horizontally */

}

http://www.flexboxdefense.com/
http://cssgridgarden.com/

control over where things end up, and how the page reacts to scrolling or
movement.

To accomplish this kind of positioning we can use the CSS position property
to override the defaults provided by the browser.

• static - the default, where elements are positioned according to the
normal flow of the document

• relative - elements are positioned according to the normal flow, but with
extra offsets (top, bottom, left, right), allowing content to overlap

• absolute - elements are positioned separate from normal flow, in their
own "layer" relative to their ancestor element, and don't affect other
elements. Useful for things like popups, dialog boxes, etc.

• fixed - elements are positioned separate from normal flow, and get
positioned relative to the viewport.

• sticky - a hybrid of relative and fixed , allowing an element to be
positioned relatively, but then "stick" when scrolling or resizing the
viewport. This is often used for headings, which can be scrolled up, but
then stay in place as you continue down into the document.

z-index Property
In addition to controlling how elements are positioned in the X and Y planes,
we can also stack elements on top of each other in different layers. We achieve
this through the use of the z-index property.

The z-index is a value positive or negative integer, indicting which stack level
the element should be placed within. The default stack level is 0 , so using a
z-index higher than 0 will place the content on top of anything below it.

https://developer.mozilla.org/en-US/docs/Learn/CSS/CSS_layout/Positioning
https://developer.mozilla.org/en-US/docs/Web/CSS/position
https://developer.mozilla.org/en-US/docs/Web/CSS/position
https://developer.mozilla.org/en-US/docs/Learn/CSS/CSS_layout/Positioning#Static_positioning
https://developer.mozilla.org/en-US/docs/Learn/CSS/CSS_layout/Positioning#Static_positioning
https://developer.mozilla.org/en-US/docs/Learn/CSS/CSS_layout/Positioning#Relative_positioning
https://developer.mozilla.org/en-US/docs/Learn/CSS/CSS_layout/Positioning#Relative_positioning
https://developer.mozilla.org/en-US/docs/Learn/CSS/CSS_layout/Positioning#Absolute_positioning
https://developer.mozilla.org/en-US/docs/Learn/CSS/CSS_layout/Positioning#Absolute_positioning
https://developer.mozilla.org/en-US/docs/Learn/CSS/CSS_layout/Positioning#Fixed_positioning
https://developer.mozilla.org/en-US/docs/Learn/CSS/CSS_layout/Positioning#Fixed_positioning
https://developer.mozilla.org/en-US/docs/Learn/CSS/CSS_layout/Positioning#position_sticky
https://developer.mozilla.org/en-US/docs/Learn/CSS/CSS_layout/Positioning#position_sticky
https://developer.mozilla.org/en-US/docs/Web/CSS/z-index
https://developer.mozilla.org/en-US/docs/Web/CSS/z-index

The z-index is often used with position to place content in arbitrary
positions overtop of other content. For example, a lightbox that appears over a
site's content to show an image.

overflow Property
When the contents on an element are too large to be displayed, we have
options as to how the browser will display the overflowing content. To do this,
we work with the overflow , overflow-x , overflow-y properties

• visible - default. No scroll bars provided, content is not clipped.
• scroll - always include scroll bars, content is clipped and and scroll if

required
• auto - only include scroll bars when necessary, content is clipped and and

scroll if required
• hidden - content is clipped, no scroll bars provided.

Suggested Readings
• CSS Box Model
• CSS Layout
• Learn CSS Layout

https://unsplash.com/photos/mtMFJz071Cs
https://developer.mozilla.org/en-US/docs/Web/CSS/overflow
https://developer.mozilla.org/en-US/docs/Web/CSS/overflow
https://developer.mozilla.org/en-US/docs/Web/CSS/overflow
https://developer.mozilla.org/en-US/docs/Web/CSS/overflow
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Box_Model
https://developer.mozilla.org/en-US/docs/Learn/CSS/CSS_layout
http://learnlayout.com/

Practice Exercise
In this in-class exercise we'll create a simple blog post style layout using HTML
and CSS. Begin by downloading the layout.zip file. From there, you will notice
that we have both:

• Initial HTML with no CSS: "no-css.html"
• Final version with CSS: "with-css.html"

https://patrick-crawford.github.io/WebProgrammingPrinciples/assets/files/layout-582053b203008eaed1623f7399960f68.zip

HTML Forms Introduction
Up to this point, most of our web pages have been read-only from the point of view of a
user. Users could read, view, watch, or listen to content on the page, and maybe interact
with it via JavaScript events or CSS. However, we haven't given our users a way to share
data with us.

HTML provides a mechanism to overcome this problem using forms. Forms provide users a
method of entering data on a web page. This data could be used directly in the page (e.g.,
change display options), or could be sent on to a web server (e.g., logging into a site,
adding data to a database).

Every time we log-in, purchase items at an online store, or perform a search, we are using
forms.

<form>, <input>, and other Form markup
An HTML form is created using special markup and a number of special-purpose elements.
The browser provides the user with custom components for entering, modifying, or even
uploading data to be associated with our form. We'll begin by learning how to create, use,
and style these form elements, and later look at how to work with the data
programmatically in JavaScript.

The most important element for creating web forms <form> . A <form> element represents
a section of a web page that contains interactive controls that a user can use to enter and
submit data to the web page or server. The <form> element is a special type of container
element, which we use to define information about how to send the user's data to a
server:

The <form> 's action attribute defines the URL where the data should be sent when
submitted. In this case /submit really means "send this data to the same web server as
the page was served from, and to the /submit route". Sometimes you'll also use

<form id="data" action="/submit" method="post"></form>

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/form
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/form

action="#" to indicate that the form is to be processed in the browser, but not sent to
any server URL.
The method tells the browser which HTTP method to use when submitting the data to the
URL defined in action . By default this will be GET , and all form options will be sent as
query string values on the URL. When submitting a lot of form data, we can also use POST ,
which will include the information in the request's headers instead, allowing more content
to be sent (i.e., URLs have a maximum length).

A <form> contains various elements that make up the set of inputs and widgets available
to the user. The most common type of input control is the <input> element.

An <input> element represents an interactive form control used to accept data from the
user. There are dozens of different types of input controls, with new ones still be added.
Here's a basic <input> element for a user to enter their name in a textbox:

The <input> element is used to tell the browser we want an input control to be created on
the page. Notice that <input> elements are empty (i.e., no content) and don't have a
closing tag. All of the information is stored in attributes on the element. As with all HTML
elements, it's common (but not required) for an <input> control to have an id attribute,
which uniquely identifies this control. In addition, we also specify a name="first-name"

attribute, which is used later to associate the value entered by the user with the particular
control on the form--in this case, the value entered by the user will be called first-name

when the form gets processed. Finally, we have a type="text" attribute, indicating that
this form control should be rendered in the page as a textbox.

There are many more form elements, attributes, and input types to learn. Let's continue by
looking at some well-known, real-world examples of forms and how they are built.

Form Example 1: Google Search
Our first example is perhaps the most popular form on the web:

<input id="name" type="text" name="first-name" />

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input#Form_%3Cinput%3E_types

Here's a simplified version of the HTML Google uses to create that form (if you want to see
the original, open your browser's dev tools on the Google home page and inspect the
elements yourself):

Let's examine this code for a moment and try to understand what's happening.

First, notice that all of the input controls (i.e., the search text box and both buttons), are
grouped together inside a <form></form> element.

<form id="tsf" class="tsf nj" action="/search" method="GET" name="f">

<input name="source" type="hidden" value="hp" />

<input value="qIXxW6O0FeTMjwT1zpioCA" name="ei" type="hidden" />

<input class="gLFyf gsfi" maxlength="2048" name="q" type="text"

title="Search" />

<input value="Google Search" name="btnK" type="submit" />

<input value="I'm Feeling Lucky" name="btnI" type="submit" />

</form>

The <form> element has a number of attributes, some we've seen before (id , class),
and others are new:

• name="f" - before browsers standardized on using id to identify elements, forms
used to have a name attribute to identify a form in the page (i.e., if there was more
than one).

• action="/search" - tells the browser where the data in the form is meant to be
submitted. In this case /search really means the URL https://google.com/search .
Sometimes you'll also use action="#" to indicate that the form is to be processed in
the browser, but not sent to any server URL.

• method="GET" - tells the browser to use the HTTP GET method when submitting this
form. In this case, the amount of data being sent is small enough that it can fit
everything on the URL.

The <form> element then contains a number of elements that represent form input
controls. Google uses the most common form control, <input> , to build the form, creating
three different kinds of form controls:

1. Hidden Input Controls: <input name="source" type="hidden" value="hp"> and
<input value="qIXxW6O0FeTMjwT1zpioCA" name="ei" type="hidden"> - these are
hidden form controls. They won't be visible to the user, but allow for extra information
to be stored in a value that will get submitted with the form. Think of these hidden

controls as variables. In this case, Google is storing information about the fact that
we're doing our search from the Home Page (name="source" value="hp") and also
including a special timestamp (value="qIXxW6O0FeTMjwT1zpioCA" name="ei")
indicating when this query was made. In both cases the name and value attributes
are used to indicate key/value pairs in the form data.

2. Text Input Control: <input class="gLFyf gsfi" maxlength="2048" name="q"

type="text" title="Search"> - this is a text input form control. This control gets
rendered as a textbox in the browser, which the user can focus and enter text with the
keyboard. The default type of a form control is text . As we discussed above, all
<input> elements need a name attribute to uniquely identify the value . In this case
the name is q , short for query, and there is no defined value , since the user will
provide it. Also note the use of the maxlength="2048" attribute, which tells the
browser not to let the user type more than 2,048 characters in this textbox.

3. Submit Button Controls: <input value="Google Search" name="btnK"

https://deedpolloffice.com/blog/articles/decoding-ei-parameter

type="submit"> and <input value="I'm Feeling Lucky" name="btnI"

type="submit"> - these are submit form controls, which literally submit (upload) the
<form> 's data using the HTTP method to the action URL.

If I enter some some text in the textbox, cat pictures , and click the Google Search

submit button, my browser submits the form to /search as a GET request, encoding all
the values in the form into query string values on the URL:

https://www.google.com/
search?source=hp&ei=qIXxW6O0FeTMjwT1zpioCA&q=cat+pictures&btnK=Google+Search

If we break that URL apart, we notice the following:

• https://www.google.com the origin
• /search - the pathname
• ?source=hp&ei=qIXxW6O0FeTMjwT1zpioCA&q=cat+pictures&btnK=Google+Search the

query string, with the submitted form values source=hp , i=qIXxW6O0FeTMjwT1zpioCA ,
q=cat+pictures , and btnK=Google+Search separated by &

We could have manually entered that URL and gotten our search results. However, by
using a <form> and submitting via a GET request, the browser has created it for us.

Form Example 2: My Seneca Login
Our second example is well known to Seneca students: the login form on
https://my.senecacollege.ca:

https://www.google.com/search?source=hp&ei=qIXxW6O0FeTMjwT1zpioCA&q=cat+pictures&btnK=Google+Search
https://www.google.com/search?source=hp&ei=qIXxW6O0FeTMjwT1zpioCA&q=cat+pictures&btnK=Google+Search
https://my.senecacollege.ca/

Here's a simplified version of the HTML used to create it:

<form action="/webapps/login" method="POST" name="login">

<label for="user_id">Username</label>

<input id="user_id" type="text" name="user_id" size="25" maxlength="50" />

<label for="password">Password</label>

<input id="password" type="password" name="password" autocomplete="off"

size="25" />

<input id="entry-login" type="submit" class="button expand" value="Login"

name="login" />

This does many similar things to Google's search form, so let's focus on the differences.

First, this form uses a new HTML element, <label> , to add a text label to the two
textboxes. Each label is a caption of text that gets associated with an <input> control by
specifying a for="..." attribute that links it to the id of the correct control. We see two
instances of this, one for Username , which connects with the user_id input control, and
Password for password .

Second, the user_id input control is of type text , but it specifies both size="25" and
maxlength="50" . This tells the browser to render a textbox that can display 25 characters,
and to not allow the user to enter any characters beyond 50.

Third, the password input control is not of type text , but rather password . This tells the
browser to render a textbox, but hide the characters the user enters. In a desktop browser
this might mean using * for every character; in a mobile browser this might mean that
each character is shown for a second, and then replaced by a • . The password control
also specifies size="25 to indicate that users shouldn't be able to type (or paste) more
than 25 characters. The autocomplete="off" attribute is used as a hint to the browser
that it shouldn't try and automatically fill-in the password field. Most browsers ignore this
request, since password managers have become so common.

Finally, notice that the <form> uses method="POST" instead of GET , and
action="/webapps/login" . This means that when we submit the <form> , the data will be
POST ed to https://my.senecacollege.ca/webapps/login/ . A POST differs from a GET in
that the form data will be encoded and included in the body of the HTTP request instead of
the URL. If I try to login with a username of john and a password of 123 , here's a
simplified version of the HTTP request that gets sent to the web server:

Notice the Content-Type is set to be application/x-www-form-urlencoded , which means
we're submitting form data. Also notice that the body of the request (everything after the

Host: my.senecacollege.ca

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Content-Type: application/x-www-form-urlencoded

Content-Length: 59

action=login&login=Login&new_loc=&password=123&user_id=john

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/label
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/label
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/password
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/password
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/password#Allowing_autocomplete
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/password#Allowing_autocomplete
https://en.wikipedia.org/wiki/Password_manager
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/POST#Example
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/POST#Example

blank line), is our form data in the form name=value with each one separated by a &

symbol.

Notice too how the password I entered is being sent in plain text! Even though the browser
masked the password when I entered it in the password control, it ends up being sent to
the server without being encrypted or altered in anyway. This is important to understand,
both as a user and developer, since you only want to submit sensitive form data to secure
origins (i.e., using https).

Form Example 3: Twitter Email Notification Settings
Let's look at another, somewhat more complex form, this time from Twitter's settings:

Here's a simplified version of the HTML used to create it:

<form id="notifications-form" method="POST" action="/settings/

email_notifications/update">

<fieldset class="control-group">

<legend class="control-label">Email me when</legend>

<label class="t1-label checkbox">

<input

type="checkbox"

value="1"

id="send_network_activity_email"

name="user[send_network_activity_email]"

disabled=""

/>

You have new notifications.

<a

href="https://support.twitter.com/articles/127860#tweet-activity"

target="_blank"

class="learn-more"

rel="noopener"

>Learn more.

</label>

<input type="hidden" value="0" name="user[send_network_activity_email]"

disabled="" />

<label class="t1-label checkbox">

<input

type="checkbox"

value="1"

id="send_new_direct_text_email"

name="user[send_new_direct_text_email]"

disabled=""

/>You're sent a direct message

</label>

<input type="hidden" value="0" name="user[send_new_direct_text_email]"

disabled="" />

<label class="t1-label checkbox">

<input

type="checkbox"

value="1"

id="send_shared_tweet_email"

name="user[send_shared_tweet_email]"

checked=""

disabled=""

This form doesn't have any controls where the user types text. Instead, it uses interactive
checkboxes and dropdown menus. It also introduces some more new form elements to
create sub-groups of options in a larger form. Let's once again focus on what's new.

The first thing we see is that the form is grouped into two sets of controls. This is achieved
through the use of the <fieldset> container element. The <legend> element provides a
caption for the groupings, "Email me When" vs. "Email you with".

Next we see a new type of <input> being used in order to create a checkbox :

In this case the checkbox is toggled on, and value="1" represents this in HTML. It's not
being done in this case, but often a checkbox will use the checked attribute to indicate
that the checkbox is checked, and value to specify what data will be submitted with the
form (it doesn't have to be 1 or 0, but could be any string). This checkbox also includes the
disabled attribute, indicating that while it is visible, it can't currently be changed. In this
case, the user would have to enable email settings for this control to become alterable.

In addition to using multiple checkbox controls, this form also uses a dropdown menu of
options:

The dropdown is created using a mix of <select> and <option> elements. The <select>

is a container for all the various possible options in the list. Each option is defined via an
<option> , which specifies a value (the data that will be sent when the form is submitted),

<input

type="checkbox"

value="1"

id="send_network_activity_email"

name="user[send_network_activity_email]"

disabled=""

/>

<select class="t1-select preference-dropdown" disabled="">

<option value="1">Sent daily</option>

<option value="3">Sent weekly</option>

<option value="4" selected="selected">Sent periodically</option>

</select>

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/fieldset
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/fieldset
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/legend
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/legend
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/checkbox
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/checkbox
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input#disabled
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input#disabled
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/select
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/select
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/option
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/option

and the text to display. By including selected="selected" on one of options, the browser
will show that value as the chosen value when the page loads.

Form Example 4: Airbnb Search
Here's another form that introduces a few more concepts:

And the simplified HTML used to create it:

<form id="MagicCarpetSearchBar" action="/s">

<label class="_rin72m" for="magic-carpet-koan-search-bar">WHERE</label>

<input

This <form> will be submitted to https://www.airbnb.ca/s using the default GET method
(all form data submitted on the URL's query string) when the submit button is clicked.
However, notice how <button> elements have been used instead of <input

type="submit"> . A <button> can be used anywhere in (or outside of) a form where you
need to have a clickable widget. Here two <button> s are being used, one to submit the
form, the other to provide a custom entry for the number of guests (clicking the drop-down
arrow reveals another form).

Something else that's new in this form is the use of new <input> attributes:

• autocomplete="off" - disable autocomplete
• autocorrect="off" - an Apple extension to the web, indicating whether to have the

browser offer to autocorrect text entered by the user
• spellcheck="false" - whether or not the browser should offer to spellcheck the text

entered by the user.

Another new attribute has been used on the <input> elements to add placeholder text:

A placeholder is a hint provided to the user about what to enter, or the format. It's text is
not part of the value, and is not sent to the server. The text is usually rendered in a lighter
colour, and will disappear when the user starts typing.

Form Example 5: Google Translate
Our next example introduces two more styles of form input controls. Google Translate
allows users to enter text in one language and have it get translated by Google's
translation service. There are a number of ways to enter text:

1. free-form text, which can span many lines

placeholder="Anywhere"

...

placeholder="dd-mm-yyyy"

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/button
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/button
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input#autocomplete
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input#autocomplete
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/text#autocorrect
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/text#autocorrect
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/text#spellcheck
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/text#spellcheck
https://translate.google.ca/

2. upload a file to be translated

Here's a simplified version of the HTML used to create this form:

<form id="gt-form" action="/" name="text_form" method="post"

enctype="multipart/form-data">

<input type="hidden" id="gt-sl" name="sl" value="auto" />

<input type="hidden" id="gt-tl" name="tl" value="es" />

<input type="hidden" name="js" value="y" id="js" />

<input type="hidden" name="prev" value="_t" id="prev" />

<input type="hidden" name="hl" value="en" id="hl" />

<input type="hidden" name="ie" value="UTF-8" />

<textarea

id="source-is"

name="text-is"

disabled=""

dir="ltr"

spellcheck="false"

autocapitalize="off"

autocomplete="off"

autocorrect="off"

class="goog-textarea short_text"

wrap="SOFT"

></textarea>

<input type="file" name="file" id="file" size="40" />

</form>

Once again, a <form> defines where and how to submit the user's data, and includes
various hidden controls that set default values for things like language choice. However,
notice that a new enctype has been used: enctype="multipart/form-data" . This is done
because whole files are being included beyond the usual form values.

What's new this time are the inclusion of a <textarea> and <input type="file"> .

A <textarea> is used to create a multi-line text editing control. In this case it allows us to
enter many lines of text. A <textarea> has numerous attributes that can be used to set
things like the number of rows or cols (columns) to display, and how to wrap the text--
here soft is used to indicate that we want the lines to be broken in the browser, but the
text should not include CR+LF end of line pairs.

The <input type="file"> control allows a user to Browse... for files (or folders) to
upload. On the page a file upload control is displayed as a button, which when clicked
opens a File dialog box, allowing the user to navigate to their chosen file(s). The files are
then "uploaded" to the web page, before being included in the form submission and sent
to the server.

Leverage the Platform: the right control
Before we look at styling, and think about custom UI, it's a good idea to remind ourselves
about the built-in controls the web platform offers. A textbox is often our first choice, but
make sure you pick the most appropriate input control type for the data you're expecting:

• <input type="tel"> - Telephone numbers. On mobile, the keyboard will show a
keypad style entry vs. letters.

• <input type="url"> - URLs. On mobile, the keyboard will show extra buttons (e.g.,
.com) to make entering the URL easier. URLs must begin with http:// or another
valid scheme.

• <input type="email"> - Email Address. On mobile, the keyboard will include keys like
@ to make it easier to enter an email address.

• <input type="number"> - A Number (integer). On mobile, the keyboard will switch to
the number pad.

• <input type="range"> - A Number between two values (i.e., range of values) . Gets

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/textarea
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/textarea
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/file
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/file
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/textarea
https://developers.google.com/web/fundamentals/design-and-ux/input/forms/#html5_input_types
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/number
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/number
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/url
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/url
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/email
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/email
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/number
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/number
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/range
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/range

displayed as a slider, making it easier to switch between values.
• <input type="date"> , <input type="time"> , <input type="week"> , <input

type="month"> , <input type="date-local"> - Date/Time values (or portions thereof).
Users are provided with special purpose date controls for entering valid dates, times,
etc.

• <input type="color"> - Colour value. The OS will provide a colour picker control to
visually select a colour.

The list goes on, and it's worth familiarizing yourself with everything you can use. Many of
these controls have special native rendering, especially on mobile devices.

Leverage the Platform: give the
browser hints for name and autocomplete

Browsers try to autofill common field information for users. As a web developer, you can
improve the user experience of your forms by giving the browser hints about the data
you're expecting for each form input field.

We do this using standard values for the name="..." and autocomplete="..." attributes
on a form control. For example, if we needed a username:

Or, if we needed a user's mobile telephone number:

There's a long list of standard name/autocomplete values that browsers know about and
you should use whenever you want to help the user enter less information.

<label for="username">Username</label>

<input type="text" name="username" id="username" autocomplete="username" />

<label for="mobile-num">Mobile Number</label>

<input type="tel" name="mobile" autocomplete="tel" id="mobile-num" />

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/date
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/date
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/time
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/time
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/week
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/week
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/month
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/month
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/month
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/month
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/date-local
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/date-local
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/color
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/color
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input#Form_%3Cinput%3E_types
https://developer.mozilla.org/en-US/docs/Learn/HTML/Forms/The_native_form_widgets
https://support.google.com/chrome/answer/142893
https://html.spec.whatwg.org/multipage/form-control-infrastructure.html#autofill
https://html.spec.whatwg.org/multipage/form-control-infrastructure.html#autofill

Other <input> Attributes
We've already seen many attributes that can be used with <input> controls, but there are
some other important ones to know about:

• autofocus - if present, indicates that the input control should automatically get
focused.

• required - if present, indicates that the input control must have a value before the
form can be submitted.

• tabindex - a number indicating the order in which each control should receive focus
when the user press the tab key. This is useful for keyboard navigation, which users to
a lot with forms.

• list - the id of a <datalist> element that provides autocomplete suggestions to be
used for the control's value. For example, providing a list of possible courses in a
textbox:

<input type="text" list="subjects" name="course" />

<datalist id="subjects">

<option value="EAC150"></option>

<option value="IPC144"></option>

<option value="ULI101"></option>

<option value="IOS110"></option>

</datalist>

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input#Attributes
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input#autofocus
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input#autofocus
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input#required
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input#required
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input#tabindex
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input#tabindex
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input#list
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input#list

Forms & CSS
HTML forms have evolved and improved significantly in HTML5 and modern
browsers. As you learn how to create and style your own forms, be aware that
many resources give outdated advice, or use unnecessary workarounds and
tricks to create functionality that is now built into the web.

Form controls use the CSS box model, but each one applies it slightly
differently. This can make it hard to align everything. We can make things
easier by altering our controls' box-sizing to use border-box , where the
width and height also include the controls content, padding, and border. This
helps to even out the inconsistencies between different controls and their
sizes:

When working with <label> s and s in forms, it's common to need to
specify their width and height, so that they properly align with other controls in
the form. By default these controls are displayed as inline elements, but we
can instead use display: inline-block; to add a width and height to an
inline element.

/* Example: make all controls 150px wide */

input,

textarea,

select,

button {

width: 150px;

margin: 0;

box-sizing: border-box;

}

https://developer.mozilla.org/en-US/docs/Learn/HTML/Forms/Styling_HTML_forms#Box_model
https://developer.mozilla.org/en-US/docs/Learn/HTML/Forms/Styling_HTML_forms#Box_model
https://developer.mozilla.org/en-US/docs/Web/CSS/box-sizing
https://developer.mozilla.org/en-US/docs/Web/CSS/box-sizing
https://developer.mozilla.org/en-US/docs/Web/CSS/box-sizing#Values
https://developer.mozilla.org/en-US/docs/Web/CSS/box-sizing#Values
http://learnlayout.com/inline-block.html
http://learnlayout.com/inline-block.html

CSS Selectors and Forms
There are a number of CSS selectors that are useful when working with forms.

An attribute selector allows us to match on the basis of either:

• the presence of an attribute
• the exact or partial match of an attribute's value

For example, consider the following:

Another useful selector type are the various sibling selectors:

label {

display: inline-block;

width: 100px;

text-align: right;

}

/* Style submit input controls */

input[type='submit'] {

border: 2px solid #ccc;

}

/* Style all <input> elements that are direct siblings of a

<label> */

label+input {

...

}

/* Style all <input> elements that are siblings (direct or

Finally, a range of pseudo-selectors can be added to other elements/selectors
to specify the state of a form control:

• :valid - style to be used when the value meets all of the validation
requirements.

• :invalid - style to be used when the value does not meet all of the
validation requirements.

• :required - style for an input element that has the required attribute set.
• :optional - style for an input element that does not have the required

attribute set.
• :in-range - style for a number input element where the value is in range.
• :out-of-range - style for a number input element where the value is out

of range.

Suggested Readings
• HTML Forms
• Designing Efficient Web Forms: On Structure, Inputs, Labels and Actions
• Create Amazing Forms
• Bootstrap Forms

https://developer.mozilla.org/en-US/docs/Learn/HTML/Forms
https://www.smashingmagazine.com/2017/06/designing-efficient-web-forms/
https://developers.google.com/web/fundamentals/design-and-ux/input/forms/
https://getbootstrap.com/docs/4.1/components/forms/

Practice Exercise
In this in-class exercise we'll create a simple HTML form and then style it using
CSS. Begin by downloading the layout.zip file. From there, you will notice that
we have both:

• Initial HTML with no CSS: "form-no-css.html"
• Final version with CSS: "form-styled.html"

https://patrick-crawford.github.io/WebProgrammingPrinciples/assets/files/layout-6633d8d216963ae5618f4174996c9267.zip

HTML5 Form Validation
Client Side Form Validation
When a user submits a form, we generally want to send the form's data to a
server. We use the form's action to specify a server URL, and a method to
indicate the HTTP request type to use when sending the data.

Before we can use this data in a meaningful way, we need to validate it. It's
easy for users to make typos, enter the right information but in the wrong field,
or use a format we aren't expecting. We need to be able to parse and
understand the data using code. This means having data that follows some
rules.

In order to be able to work with user data, we have to provide some
mechanisms for enforcing these rules, and give users hints, guides, and safety
checks as they are entering data and submitting forms.

We have two opportunities to validate form data:

1. Client-Side: before we submit the form to the server, we validate it in the
browser using HTML5 and JavaScript.

2. Server-Side: after the data is submitted, the server must re-validate it.

We will be focusing on client-side validation in this course.

You might be wondering why we bother validating form data twice, if we're just
going to re-validate it no matter what on the server. There are a number of
reasons:

1. Save bandwidth: don't send data over the network if it's incomplete or not
in the correct form

2. Immediate feedback: users don't have to wait for their data to travel all the
way to the server, and the page to reload, before getting feedback that
they need to correct something simple.

3. Contextual feedback: prompt users to correct mistakes as they are
entering the data vs. at the end, after they've moved on from entering
some piece of information (e.g. a credit card).

HTML5 Validation Features
We've already discussed a number of important <input> types that allow us to
tell the browser about the type of data we expect, for example <input

type="tel"> for telephone numbers or <input type="email"> for email
addresses.

Each of these special purpose <input> types comes with its own set of built-in
data validation:

Email Address
<input type="email">

An email address must not be an empty string, and must be a valid (i.e., text is
in valid email format vs. email address actually exists). If you include the
multiple attribute, the control will allow a list of addresses, and validate each
one.

Telephone Number
<input type="tel">

Phone numbers are very difficult to validate, because they differ so much

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/number
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/number
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/number
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/number
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/email
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/email
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/email
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/email
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/number
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/number
https://github.com/googlei18n/libphonenumber/blob/master/FALSEHOODS.md

around the world. You might think you could just check for something like
555-555-5555 , but this would miss things like country codes, number patterns
that use a different number of digits, short-codes for texting, 1-800 style
numbers, etc.

As a result, there is no default validation applied to a tel type input.

URL
<input type="url">

Unlike telephone numbers, URLs can be validated. If you use a url type input,
the browser will make sure it is not empty, and that the value is a valid URL.

Dates and Times
<input type="date"> , <input type="time"> , <input type="week"> , <input

type="month"> , <input type="date-local">

Dates and times are not validated by the browser. However, the user will
usually be prompted to "pick" a date/time value visually instead of entering
one as text. You can also further restrict the date/time by adding a min="..."

or max="..." to the input , which specifies a date/time to use as a lower or
upper range when validating.

Colour
<input type="color">

A color 's value is considered to be invalid if it can't be converted (by the
browser) into a seven-character lower-case hexadecimal value (e.g., #000000).

https://github.com/googlei18n/libphonenumber/blob/master/FALSEHOODS.md
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/url
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/url
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/date
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/date
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/time
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/time
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/week
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/week
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/month
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/month
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/month
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/month
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/date-local
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/date-local
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/color
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/color

Number
<input type="number"> , <input type="range">

A number must be a valid number, or the browser won't allow it. You can also
further restrict the number's value by adding a min="..." or max="..." to the
input , which specifies a lower or upper range when validating.

Using Attributes to Prevent Invalid
Data
Beyond choosing trying to choose the most appropriate <input> type for your
data, another layer of client-side validation comes from using attributes to
indicate to both the user and browser what we expect to be entered.

placeholder and title

We've discussed placeholder previously as part of our forms and CSS
discussion. It's important to highlight it once again since it also plays an
important role in helping the user understand how to enter data properly.

Together with <label> s and the title attribute (shown when you hover over
an element in a tooltip), these extra bits of text provide important clues and
instructions about how to use a given input control.

For example, if we are expecting the user to enter a list of email addresses, we
could do the following:

<label for="address-list">Email Address List</label>

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/number
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/number
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/range
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/range
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input#Labels_and_placeholders
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input#Labels_and_placeholders

disabled

The disabled attribute is a boolean (i.e., it is present or not present) that
indicates that a field cannot be interacted with by the user. In the browser it
will show up with a dimmer colour, and clicking it will have no effect.

We can use disabled to turn off certain controls in a form that don't currently
apply. Sometimes a form will have options with dependencies on other
controls. For example, booking a flight that is one-way vs. two-way and
whether or not you need a second date entered for the return trip.

Using disabled allows us to include and display optional input options in a
form without polluting the data by accidentally allowing the user to enter
information that isn't appropriate.

required

The required attribute is a boolean (i.e., it is present or not present) that
indicates that a field must have a value before the user can submit the form.
The browser will block attempts to submit until a value has been entered.

<form action="/s" name="login">

<input type="text" name="flight" />

<input type="date" name="date1" />

<input type="checkbox" name="return-flight" />

<input type="date" value="date2" disabled />

</form>

<form action="/s" name="login">

<input type="text" name="username" required />

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input#disabled
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input#disabled
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input#required
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input#required

In the form above, both the username and password fields are required, and
must have a value before the form can be submitted (i..e, by clicking the
Login button). Notice that the submit control does not have required

attribute.

When a field has the required attribute, the browser automatically applies the
:required pseudo-class. On the other hand, any field without the required

attribute automatically gets the :optional pseudo-class applied. This can be
useful in CSS styling.

pattern

The pattern attribute allows us to include a regular expression for the browser
to use when validating the value entered by a user for a given input control.

For example, imagine if we need the user to enter a file extension and want to
support data of the following form .exe , .EXE , or exe .:

Consider how you might write a regular expression for each of the following:

• social security number (###-##-####)

input:required {

/* styles for required input controls */

}

input:optional {

/* styles for optional input controls */

}

<input name="file-extension" type="text" placeholder=".exe"

pattern="\.?[a-zA-Z]{3}" />

https://developer.mozilla.org/en-US/docs/Learn/HTML/Forms/Form_validation#Validating_against_a_regular_expression
https://developer.mozilla.org/en-US/docs/Learn/HTML/Forms/Form_validation#Validating_against_a_regular_expression

• phone number (555-555-5555 or 555-5555 or (555) 555-555)
• ip address (127.0.0.1 or 255.255.255.255)
• username (alpha, numbers underscore, dash, 8-16 long)
• password (alpha, number, symbols, underscore, dash, up to 256 long)
• postal code (m5w 1e6 or M5W 1E6 or M5W1E6)
• price ($1.50 or 1.50 or 1)
• seneca course code (ABC123SSA)

Suggested Readings
• HTML Form Validation
• Static Site Hosting

https://developer.mozilla.org/en-US/docs/Learn/HTML/Forms/Form_validation
https://patrick-crawford.github.io/static-site-hosting.md

Using JavaScript
JavaScript and Client-Side
Validation
All of the methods above are examples of static checks (i.e., they don't
change) that we're adding to our form controls. They do a lot to help guard
against invalid data; however, there are times that we need more flexible
control over what happens.

In order to add dynamic checks (i.e., can be changed at runtime) we need to
layer in use of JavaScript. By using JavaScript we have more freedom to create
custom and complex validation rules beyond the set of static options provided
by HTML and the browser. We can also use JavaScript in combination with CSS
to provide a better user experience:

• display more meaningful, context-aware error messages
• show/hide error messages depending on the location of the cursor and

where the user is focused
• place errors (or other information) anywhere in the DOM vs. being limited

to labels, placeholder or tooltip text

Accessing Form Fields
When writing JavaScript to validate form fields, there are a number of ways to
access the input controls and get their values. Consider the following form:

<form id="info-form" name="info" action="/i">

<input id="first-name" name="fname" type="text" />

Here are some of different ways we could access this form:

Once we have a reference to the <form> element in JavaScript, we can use the
name of the form controls to get access to the individual fields and there
.value :

Special Cases for Obtaining Form Values
Some form controls need different approaches when you want to access their
value in JavaScript:

1. <textarea> : use the .value property to access the text.
2. <input type="radio"> : use the name property (i.e., all radio buttons will

use the same name in a group) to iterate over all possible radio controls,
and then look at the .checked property, which will be true for the one
checked.

3. <input type="checkbox"> : use the name property to iterate over all

// 1. Using its id and getElementById()

var form = document.getElementById('info-form');

// 2. Using its id and querySelector()

var form = document.querySelector('#info-form');

// 3. Using document.forms and the id or name of the form

var form = document.forms['info-form'];

// Notice that we must wrap values with '-' in their names in

["..."] to access them.

var form = document.forms['info-form'];

var fname = form.fname.value;

var numberList = form['number-list'].value;

possible radio controls, and then look at the .checked property, which will
be true for the one checked.

4. <select> : use the selectedIndex to determine which <option> index
was selected (if any). A value of -1 means none are currently selected; a
value greater than -1 indicates the index to use when accessing the
options[n] array for the chosen option. If the <select> is defined to
allow for multiple options, you can loop through the options and inspect
the .selected property to determine if it's true .

Consider the following form:

<form id="info-form" name="info" action="/i">

<label for="text">Enter some text</label>

<textarea id="text" name="text"></textarea>

<fieldset>

<legend>Pick a Colour</legend>

<label for="colour-red">Red</label>

<input type="radio" name="colour" id="colour-red" value="red"

checked />

<label for="colour-green">Green</label>

<input type="radio" name="colour" id="colour-green"

value="green" />

<label for="colour-blue">Red</label>

<input type="radio" name="colour" id="colour-blue"

value="blue" />

</fieldset>

<label for="agree-disagree">I agree with the terms and

conditions.</label>

<input type="checkbox" name="agree" id="agree-disagree" />

In order to access the form's values in code, we could do the following:

Using the submit Event to Validate Forms with
JavaScript
There are a wide variety of custom validation tests we can write via JavaScript:

• Check for the presence or absence of a field
• Check the value of a field, and determine if it's within an expected range,

of a specific type, etc.
• Confirm that some value is "real" vs. matching an expected format. (e.g.,

var form = document.querySelector('#info-form');

// Get the value form the <textarea>

var text = form.text.value.trim();

// Get the chosen colour value from the radio button group

var colour;

var colourChoices = Array.from(form.colour); // convert to array

colourChoices.forEach(function (option) {

if (option.checked) {

colour = option.value;

}

});

// Get the chosen food value form the <select>

var food = 'None'; // there may be nothing selected

var foodChoices = Array.from(form.food); // convert to array

foodChoices.forEach(function (option) {

if (option.selected) {

food = option.value;

}

});

does a user id exist?)
• Evaluate a group of input values together as a group. Do they make sense

together?

An HTML <form> element exposes the submit event (and onsubmit event
property), which we can use to add custom JavaScript code to handle the case
that the user is trying to submit a form:

Consider the example of a form that asks the user to enter a list of 2-4
numbers. We'd like to allow the user as much freedom to enter this list as
possible, and support any style of entry:

<form id="info-form" name="info" action="/i">...</form>

<script>

var infoForm = document.getElementById('info-form');

// submit event fired when the user clicks "submit" button

infoForm.onsubmit = function () {

// Perform extra validation here. When finished validating,

return

// either `true` (form is valid) or `false` (form is invalid)

to tell

// the browser how to proceed.

};

// reset event fired when the user clicks a "reset" button

infoForm.onreset = function () {

// If you ever need to do extra work to clear a form, do it

here.

};

</script>

<div id="error-msg" class="error hidden"></div>

AJAX Fundamentals
AJAX
AJAX is a term coined in 2005 by Jesse James Garrett that refers to an approach
to web development that uses dynamic requests to a server to update portions
of a page at runtime. Today, the method is so common that it's hard to talk
about it not existing. But at the time, it was a game changer.

AJAX stands for Asynchronous JavaScript and XML, which is based on a group of
web technologies: HTML (and at the time XHTML), CSS, JavaScript, the DOM,
XML, JSON, and a web API called XMLHttpRequest, or just XHR for short.

Before 2005, web browsers lacked a lot of the modern features we take for
granted today. Web servers were used to build and serve all (or most) aspects
of a web page. Making changes on the page meant a full request/response trip
to and from the server, in order to update content. The entire page had to be
reloaded for anything of significance to change.

Today we expect "real-time" data to be a part of our web browsing experience.
Consider a site like GMail or Google Maps. If we want to see messages in
another folder, or navigate to another city, we expect to be able to do that
without having to reload the entire page. AJAX makes this possible.

Instead of modifying the entire page (DOM), we instead make background
requests for data from servers, and then use that data to update the page's
contents live via the DOM's APIs.

http://adaptivepath.org/ideas/ajax-new-approach-web-applications/
https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest

Understanding AJAX's "A"
(Asynchronous) and "J"
(JavaScript)
As we know from previous discussions, web browsers use HTTP/HTTPS to send
requests to web servers, which build replies and send back responses (HTML,
CSS, images, fonts, JavaScript, etc).

While we don't want to have to reload the entire page in order to get updates
from the server, we would like to be able to leverage this communication
pattern from within the running page: we need a way to make HTTP requests,
wait for responses from the server, and then do something with the data.

Browsers provide a mechanism for doing this in the form of the
XMLHttpRequest Object, or XHR for short. An XHR object let's us create and
send HTTP requests to a server, and get back data responses in various forms
(XML, HTML, JSON, text, binary, etc.)

Our XHR requests happen in the background, asynchronously (without blocking
the main UI thread in the browser), so user's can continue to work and interact
with the page while we wait for a response.

Finally, we work with XHR via JavaScript code. Let's look at a very basic
example:

// 1. Create a new instance of an XMLHttpRequest Object using its

constructor

var xhr = new XMLHttpRequest();

https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest
https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest

Example 1: Current Bitcoin Value
in USD
To demonstrate a real-world example of what we've been discussing, let's build
a simple example. Imagine we want to create a web page that includes
information about the current market value of Bitcoin, the most famous of the
blockchain-based cryptocurrencies.

The website https://www.blockchain.com provides a number of web services
we can use to get this information. In particular, we'll use
https://blockchain.info/q/24hrprice, which gives the price in US dollars over the
past 24 hours.

Here's an (simplified) example of what it sends when we make an HTTP
request:

In the above response, we have HTTP headers, a blank line, and then the data:
4200.82 .

We want our web page to include this information, but then automatically
update it every minute by requesting the current value again over HTTP. Here's
one way we could do it.

HTTP/2 200

date: Sun, 02 Dec 2018 22:48:35 GMT

content-type: text/plain; charset=utf-8

4200.82

https://en.wikipedia.org/wiki/Bitcoin
https://www.blockchain.com/
https://blockchain.info/q/24hrprice

<!doctype html>

<html>

<head>

<meta charset="utf-8" />

<title>Bitcoin Value</title>

</head>

<body>

<p>Current Bitcoin value: </p>

<script>

function updateBitcoinValue(newValue) {

// Update the with the new value we get from the

server

var span = document.querySelector('#bitcoin-value');

span.innerHTML = newValue;

// Every minute, get the new value and update the page

var oneMinute = 60 * 1000;

setTimeout(getCurrentValue, oneMinute);

}

function getCurrentValue() {

var xhr = new XMLHttpRequest();

var url = 'https://blockchain.info/q/24hrprice?cors=true';

// If/When the request returns successfully, get the value

and update DOM

xhr.onload = function () {

// Format the raw text we get from the server into a

currency string

var response = this.responseText;

var currentValue = `${response} (USD)`;

updateBitcoinValue(currentValue);

};

// If the request fails, and we get an error, update the

page with an error message

By separating the data into a separate web service, it's possible for various
applications to all share it, and use it in different ways.

Suggested Readings
• AJAX Guide
• Working with JSON
• Using XMLHttpRequest

https://developer.mozilla.org/en-US/docs/Web/Guide/AJAX
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/JSON
https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest/Using_XMLHttpRequest

Data Formats
Working with Data: JSON and XML
Our previous example used a very simple data format: a single number. Often we'll need to work with more complex data, which includes
both numbers and text, lists, and complex hierarchies. To do this, we need a format that allows us to serialize (i.e., turn into strings) data
structures like Array s, Object s, etc.

The two most popular formats for data exchange on the internet are the JavaScript Object Notation (JSON) and the Extensible Markup
Language (XML).

We're going to focus mainly on JSON, but it's good to also know about XML. At one point, a lot of the techniques we will discuss were
done with XML (and many languages and services still use it). However, much of the internet has standardized on JSON as a data
exchange format.

Let's look at each in turn. First, consider the following food product data:

Here's how that data might look using XML:

Look familiar? XML and HTML are both markup languages. In XML, it's possible for us to create our own tags and document structure (i.e.,
XML Schema). You can think of HTML like an instance of XML, which is what XHTML was trying to do.

Before we look at JSON, let's look at that same data in JavaScript, using an Object Literal:

1) Name: Apple

Price per Pound: $1.29

Location: Aisle 3

2) Name: Carrots

Price per Pound: $0.46

Location: Aisle 2

<products>

<product>

<name>Apple</name>

<price currency="CAD">1.29</price>

<aisle>3</aisle>

</product>

<product>

<name>Carrots</name>

<price currency="CAD">0.46</price>

<aisle>2</aisle>

</product>

</products>

var products = [

{

name: 'Apple',

price: {

currency: 'CAD',

value: 1.29,

},

aisle: 3,

},

{

name: 'Carrots',

price: {

currency: 'CAD',

https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/XML
https://en.wikipedia.org/wiki/XML
https://en.wikipedia.org/wiki/XHTML

Here we have two Object s in an Array . Our Object s use String , Object , and Number types to represent the data.

Finally, let's format the same data in JSON:

Looks familiar, doesn't it? You'll be glad to know that since you already learned JavaScript Object Literals, you already learned 95% of
JSON format at the same time.

JSON and JavaScript Object Literals are very similar, but there are some differences. JSON is a subset of JavaScript Object Literal notation:

• All keys must be double-quoted strings: "key" vs. key

• You don't put comments in JSON
• You can't include function expressions in JSON, only data types:

◦ String

◦ Number

◦ an (JSON) Object

◦ an Array

◦ boolean true or false

◦ the value null

JavaScript includes built-in code for converting to/from JSON strings:

[

{

"name": "Apple",

"price": {

"currency": "CAD",

"value": 1.29

},

"aisle": 3

},

{

"name": "Carrots",

"price": {

"currency": "CAD",

"value": 0.46

},

"aisle": 2

}

]

var products = [

{

name: 'Apple',

price: {

currency: 'CAD',

value: 1.29,

},

aisle: 3,

},

{

name: 'Carrots',

price: {

currency: 'CAD',

value: 0.46,

},

aisle: 2,

},

];

// 1. Turn products Object into JSON string

var json = JSON.stringify(products);

NOTE: JSON.parse() will throw an error if the string isn't properly formatted JSON, so it's good to wrap your call in a try...catch

block.

Example 2: the Dog API
For our next example, let's work with another web service, but this time one that returns more complex data in the form of JSON.

The Dog API is a free web service that uses data from the Stanford Dogs Dataset. This dataset contains images and information about
120 breeds of dogs, and is used for machine learning and artificial intelligence training.

There are a number of endpoints we can use with this API, but we'll focus on these:

• https://dog.ceo/api/breeds/list/all - get a JSON formatted list of all breeds and sub-breeds
• https://dog.ceo/api/breed/hound/images/random/3 - get a JSON formatted list of image URLs for hounds, returning 3 (we can ask for

more or less) In other words the URL works like this: https://dog.ceo/api/breed/{name-of-breed}/random/{number-of-images-to-

return}

Our goal is to do the following:

1. Create a simple web page with an HTML <form>

2. Use AJAX techniques to dynamically load all dog breeds into a <select> in our form
3. Users can specify how many images they want to load: 1 to 100.
4. When the user selects a breed and clicks a <button> , we'll request the JSON list of images
5. Once we get the list of image URLs, we'll start creating elements in our page to show those dogs

See the completed code in dogs.zip. We'll discuss snippets of the code below.

1. Create a form
Let's start with a basic <form> :

Our form is very simple. Notice that it contains no <option> elements for the dog breeds. We will load these dynamically once the page
is loaded. We include a textbox for entering a number of images to show (default is 5), and provide a <button> to click.

2. Dynamically load dog breeds into a drop-down
Next we need to load our dog breeds from the Dogs API. We'll do that when the page finishes loading, and the DOM is fully created:

Our loadDogBreeds function needs to create an XHR request to the Dogs API, and parse the JSON we get back:

<form id="dogs-form" action="#">

<select id="breeds" name="breeds"></select>

<input type="number" min="1" max="100" value="5" />

<input type="button" id="btn-load" value="Show me dogs!" />

</form>

window.onload = function () {

loadDogBreeds();

};

function loadDogBreeds() {

// See https://dog.ceo/dog-api/documentation/

var url = 'https://dog.ceo/api/breeds/list/all';

var xhr = new XMLHttpRequest();

https://dog.ceo/dog-api/documentation/
http://vision.stanford.edu/aditya86/ImageNetDogs/
https://dog.ceo/api/breeds/list/all
https://dog.ceo/api/breed/hound/images/random/3
https://patrick-crawford.github.io/WebProgrammingPrinciples/assets/files/dogs-6ae21e60bcf57e23bfff5ef3c85273af.zip

When our request comes back (i.e., xhr.onload), we'll get a JSON string that looks something like this:

If we JSON.parse() that string, we'll get an Object that looks like this:

This data has two main parts:

1. a status message, that tells us the server was successful in doing our query
2. a message body, which is itself an Object of key/value pairs, with the breed name and sub-breeds (if any) in an Array .

To get all the dog breeds as a list (i.e. Array), we need to extract the message property, then call Object.keys() on its value to create
an Array out of all the names:

Next we need to take this list of breed name String s, and create <option> elements that we can dynamically add to our form's
<select> :

Our web page now has a drop-down list with all 120 dog breeds.

"{"status":"success","message":{"affenpinscher":[],"african":[],"airedale":[],"akita":[],"appenzeller":[]}}";

var response = JSON.parse(this.responseText);

/*

{

status: "success",

message: {

affenpinscher: [],

african: [],

airedale: [],

akita: [],

appenzeller: [],

...

}

}

*/

var breedList = Object.keys(response);

/*

['affenpinscher', 'african', 'airedale', 'akita', 'appenzeller', ...]

*/

// Get a reference to our <select>

var select = document.querySelector('#breeds');

// Given a breed name "beagle", return an <option value="beagle>beagle</option>

function createBreedOption(name) {

var option = document.createElement('option');

option.value = name;

option.innerHTML = name;

return option;

}

// Loop through each breed name in our Array, call createBreedOption()

// and append the <option> element to our <select>

breedList.forEach(function (breed) {

var breedOption = createBreedOption(breed);

select.appendChild(breedOption);

});

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/keys
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/keys

3. Get dog breed image URLs when the user selects a breed
When the user selects a breed from our list and clicks a <button> , we need to make another HTTP request to the server. This time we
need to get a list of image URLs for the chosen breed.

First, we need an event handler for the click:

Our loadBreedImages function is nearly identical to loadDogBreeds , but we use the breed name as part of the URL:

As before, we make a request to the server, and get back JSON, which we parse. The resulting Object we get back looks like this:

Once again we get a status and a message body. This time, however, the message is already an Array of URLs.

4. Dynamically create elements for all dog breed image URLs
Using the list of URLs for dog breed images from the server, we can easily update our page to display new images:

var btnLoad = document.querySelector('#btn-load');

btnLoad.onclick = function (e) {

var breed = document.querySelector('#breeds').value;

loadBreedImages(breed);

};

function loadBreedImages(breed) {

// See https://dog.ceo/dog-api/documentation/breed

// Use the imageCount and breed variables to create our URL

var imageCount = document.querySelector('#image-count').value;

var url = `https://dog.ceo/api/breed/${breed}/images/random/${imageCount}`;

var xhr = new XMLHttpRequest();

xhr.onload = function () {

try {

var response = JSON.parse(this.responseText);

var breedImageList = extractBreedImageList(response);

updateBreedImages(breedImageList);

} catch (e) {

showError('Unable to load dog breeds');

}

};

xhr.open('GET', url);

xhr.send();

}

{

status: "success",

message: [

"https://images.dog.ceo/breeds/hound-afghan/n02088094_1003.jpg",

"https://images.dog.ceo/breeds/hound-afghan/n02088094_1007.jpg",

...

]

}

var imagesContainer = document.querySelector('#images-container');

// Clear the imagesContainer if there is anything there now

imagesContainer.innerHTML = '';

We've now got a relatively simple page that can be changed using live data to look completely different, depending on the needs of the
user. We didn't have to write HTML for every image, which would have involved hand-writing 120 * 150 = 18,000 elements! Using
AJAX we can do this with very little code.

Complete code for the example above can be found in the following file: dogs.zip.

https://patrick-crawford.github.io/WebProgrammingPrinciples/assets/files/dogs-6ae21e60bcf57e23bfff5ef3c85273af.zip

Advanced Techniques
XHR and Cross-Origin Requests
It should be noted that we've been making requests to third-party web servers
in the example above. This is something that won't always work for all servers,
or all data types.

In the examples above, the servers were configured to allow Cross-Origin
Resource Sharing (CORS). By default, browsers maintain a sandbox around
resources (scripts, images, data) from one origin, and don't let it mix in unsafe
ways with resources from other origins.

In general, it's best to load data from the same origin as your page (i.e., the
same web server). The so-called "Same Origin" policy states that you can't
load data from other origins. However, using CORS headers, servers and
browsers can allow this in some cases. In the examples above, the servers
added a header Access-Control-Allow-Origin: * to indicate that cross-origin
requests were OK.

If ever you are trying to use XHR to request data from a serer, and it won't
work, the problem is almost certainly related to CORS.

Other Mechanisms for working
with Data
While XHR is a historically popular choice for accessing data from web
services, in recent years a number of new APIs have also emerged that offer
both similar and enhanced capabilities. Discussing these in any detail is

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

beyond the scope of this course; however, it is important that you're aware of
them, and look out for opportunities to learn and use them in future courses
and projects.

fetch() API
The fetch()API provides JavaScript developers a rich set of objects and
functions for working with the entire HTTP network infrastructure, including
things like requests, responses, the cache, etc. It uses the modern Promise API
for handling callbacks.

Here's what it would look like to use fetch to request the current Bitcoin value
from our first example above:

fetch offers much greater control over the network, and makes it easier to
process data coming from the server.

Server Sent Events
With our Bitcoin example, we needed to constantly poll (i.e., re-request) the
updated value from the server. Another approach would be to wait for the
server to send us an update (push). One way to accomplish this is with Server

fetch('https://blockchain.info/q/24hrprice?cors=true')

.then(function (response) {

var currentValue = `${response.text()} (USD)`;

updateBitcoinValue(currentValue);

})

.catch(function (err) {

updateBitcoinValue('unknown (error, unable to get current

value)');

});

https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API/Using_Fetch
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API/Using_Fetch
https://developer.mozilla.org/en-US/docs/Web/API/Request
https://developer.mozilla.org/en-US/docs/Web/API/Response
https://developer.mozilla.org/en-US/docs/Web/API/Cache
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events

Sent Events.

Server Sent Events allow web sites to open a long running connection with a
server, and get updates from the server when there is new data. On the
browser side, we use the EventSource Object to process these events, just as
we would other types of events in a web page.

Web Sockets
Server Sent Events are great for 1-way communciation from a server to a
browser, but sometimes we need to also send data back to the server at
regular intervals. Consider a chat application, where we need to both receive
and send messages.

In such systems, we need a bi-directional, long-running connection to the
server. The browser provides this in the form of a WebSocket . Web Sockets can
be connected to different backends written in any language. Within the
browser, we receive events when data arrives, and send data when we need to
over the socket.

Modern Front End Development
The concepts we've been discussing above have come to define the modern
approach to web development. Browsers have gotten faster and more
powerful, and the APIs and tools for building web services more full-featured.

As a result, new approaches to front-end development have taken over. In your
follow-up courses you'll learn more about popular front-end frameworks, which
build on the low-level ideas we've been using here (HTML, CSS, JS, DOM, JSON),
for example:

• React

https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events
https://developer.mozilla.org/en-US/docs/Web/API/EventSource
https://developer.mozilla.org/en-US/docs/Web/API/EventSource
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://reactjs.org/

• Angular
• Vue
• Ember

These frameworks take a data-driven approach to developing on the web,
separating an applications data and state from its presentation. The ideas
begun with AJAX are taken to another level, and single-page HTML applications
are used to create rich interfaces.

Understanding the foundation for how all of this works, from HTML, CSS, and JS
to JSON and XHR, will be an important part of taking the next step.

https://angular.io/
https://vuejs.org/
https://www.emberjs.com/

Using REST APIs to
Integrate Data in Web
Apps

Learning resources
Below, you will find links to learning resources that you will use in this course.

• Mozilla Developer Network (MDN)

◦ Learn Web Development
◦ HTML Element Reference
◦ CSS Reference
◦ JavaScript Reference
◦ DOM Document Reference

• Online Books (free)

◦ Eloquent JavaScript
◦ Exploring JavaScript (es5)
◦ Exploring ES6

• Software

◦ Firefox
◦ Chrome
◦ Visual Studio Code
◦ node.js

• Tools

◦ Firefox Developer Tools
◦ Chrome DevTools
◦ W3C Markup Validator
◦ W3C CSS Validator

https://developer.mozilla.org/en-US/
https://developer.mozilla.org/en-US/docs/Learn
https://developer.mozilla.org/en-US/docs/Web/HTML/Element
https://developer.mozilla.org/en-US/docs/Web/CSS/Reference
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference
https://developer.mozilla.org/en-US/docs/Web/API/document
https://eloquentjavascript.net/
http://exploringjs.com/es5/index.html
http://exploringjs.com/es6/index.html
https://www.mozilla.org/en-US/firefox/new/
https://www.google.com/chrome/
https://code.visualstudio.com/
https://nodejs.org/en/
https://developer.mozilla.org/en-US/docs/Tools
https://developers.google.com/web/tools/chrome-devtools/
http://validator.w3.org/
https://jigsaw.w3.org/css-validator/

◦ Prettier Source Code Formatter
◦ ESlint JavaScript Linter

• Online Web Code Tools

◦ Static Site Hosting
◦ JSFiddle
◦ CodePen
◦ JS Bin
◦ Glitch

https://prettier.io/
https://eslint.org/
https://patrick-crawford.github.io/WebProgrammingPrinciples/Resources/static-site-hosting.md
https://jsfiddle.net/
https://codepen.io/
http://jsbin.com/?html,js,output
https://glitch.com/

	Welcome to Web Programming Principles
	Internet Architecture
	Overview
	Application Protocols
	HTTP Requests and Responses
	URLs
	Requests
	Responses

	Web Browsers
	Uniqueness of the Web as a Platform
	Front-End Web Development: HTML5, CSS, JavaScript, and friends

	Introduction to JavaScript
	JavaScript Resources
	JavaScript Environments
	JavaScript Engines
	Running JavaScript Programs

	JavaScript Syntax
	Recommend Readings
	Important Ideas

	Practice Exercises
	Functions
	User-defined Functions
	Function Declarations
	Function Expressions
	Arrow Functions
	Parameters and arguments
	Parameters and ...
	Dealing with Optional and Missing Arguments
	Return Value
	Function Naming
	Invoking Functions, the Execution Operator

	Built-in/Global Functions
	Suggested Readings

	Scope
	Overwriting Variables in Child Scopes
	Closures

	Practice Exercises
	Introduction
	Strings
	String Properties and Methods

	Arrays
	Declaring JavaScript Arrays
	Accessing Elements in an Array
	Array Properties and Methods
	Methods that modify the original array
	Methods that do not modify the original array
	Methods for iterating across the elements in an Array

	Iterating over String, Array, and other collections

	RegExp
	Declaring JavaScript RegExp
	Understanding Regular Expression Patterns
	Matching Specific Characters
	Define Character Matching Repetition
	Define Positional Match Parameters or Alternatives

	Using RegExp with Strings

	Practice Exercises
	A Larger Problem Combining Everything:

	Objects in JavaScript
	Accessing Elements in an Object
	Destructuring Objects

	Modifying Object Properties
	Using Objects: dealing with optional parameters
	Updating, Clearing, and Removing properties
	Using Objects: creating sets to track arbitrary lists
	Complex Property Types: Object, Function
	Suggested Readings

	Constructor Functions
	Object Prototypes
	JavaScript's class and Object

	Practice Exercise
	Morse Code translator

	Running a Development Web Environment
	Code Editor
	Web Client
	Web Server
	Suggested Readings

	HTML
	HTML Document
	Basic HTML5 Document
	Common HTML Elements
	Metadata
	Major Document Sections
	Content Sections
	Text Content
	Inline Text
	Multimedia
	Scripting

	Practical Examples
	HTML Elements
	HTML Element Types: Block vs. Inline
	Empty Elements
	Grouping Elements
	Tables
	Suggested Readings

	Multimedia
	Images, Audio & Video
	Including Scripts
	Inline Scripts
	External Scripts Linked via URL

	Validating HTML

	Practical Examples
	DOM Introduction
	From HTML to the DOM
	Programming the DOM
	Finding elements in the DOM with JavaScript
	Creating elements and Modifying the DOM with JavaScript
	Examples
	Inspecting, Modifying a DOM element with JavaScript
	Element Properties
	Element Methods
	Examples

	Events & Timers
	Events
	Common Events
	The Event Object

	Timers

	Practice Exercise
	Introduction to CSS & Syntax
	CSS Syntax
	Where to Put CSS
	Inline Example
	Internal Embedded
	External File(s)

	CSS Selectors
	Tag/Type Selectors
	Class Selectors
	ID Selectors
	Contextual Selectors
	Grouping Selectors

	Suggested Readings

	Applied CSS
	Containers for Styling
	CSS Units
	CSS Colours (color)
	CSS Properties and Values
	Exploring CSS Properties and Values in the Dev Tools
	CSS text Properties
	font Properties
	Web Fonts - @font-face
	font-size property
	Text Effects

	background Properties
	Styling Links
	CSS and the DOM via JavaScript
	Exercise: Using Third-Party CSS Libraries
	How to use Third-Party CSS
	Popular CSS Libraries

	Box Model
	display Property
	Common Layout Tasks

	position Property
	z-index Property
	overflow Property
	Suggested Readings

	Practice Exercise
	HTML Forms Introduction
	<form>, <input>, and other Form markup
	Form Example 1: Google Search
	Form Example 2: My Seneca Login
	Form Example 3: Twitter Email Notification Settings
	Form Example 4: Airbnb Search
	Form Example 5: Google Translate

	Leverage the Platform: the right control
	Leverage the Platform: give the browser hints for name and autocomplete
	Other <input> Attributes

	Forms & CSS
	CSS Selectors and Forms
	Suggested Readings

	Practice Exercise
	HTML5 Form Validation
	Client Side Form Validation
	HTML5 Validation Features
	Email Address
	Telephone Number
	URL
	Dates and Times
	Colour
	Number

	Using Attributes to Prevent Invalid Data
	placeholder and title
	disabled
	required
	pattern

	Suggested Readings

	Using JavaScript
	JavaScript and Client-Side Validation
	Accessing Form Fields
	Special Cases for Obtaining Form Values
	Using the submit Event to Validate Forms with JavaScript

	AJAX Fundamentals
	AJAX
	Understanding AJAX's "A" (Asynchronous) and "J" (JavaScript)
	Example 1: Current Bitcoin Value in USD
	Suggested Readings

	Data Formats
	Working with Data: JSON and XML
	Example 2: the Dog API
	1. Create a form
	2. Dynamically load dog breeds into a drop-down
	3. Get dog breed image URLs when the user selects a breed
	4. Dynamically create elements for all dog breed image URLs

	Advanced Techniques
	XHR and Cross-Origin Requests
	Other Mechanisms for working with Data
	fetch() API
	Server Sent Events
	Web Sockets

	Modern Front End Development

	Using REST APIs to Integrate Data in Web Apps
	Learning resources

